

Emerging food-borne pathogens

- Numerous aetiological agents
 - eg. Campylobacter sp., Escherichia coli O157:H7 and related E. coli (e.g., O111:NM, O104:H21), Listeria monocytogenes, Norwalk-like viruses, Salmonella, Yersinia enterocolitica
- Virtually all have an animal reservoir (= zoonoses)
- Do not usually cause illness in infected animals
 - public health concerns must now include healthy animals
 - and assess what food animals themselves eat and drink
 - contaminated foods usually look, smell, and taste normal

4

6

Emerging food-borne pathogens

Pathogen	Foodborne cases	Foodborne deaths	Annual Cost
Campylobacter	1.4-1.8 Million	100-500	\$US 0.6-1.0 billion
E. coli	8,000-16,000	160-400	\$US 0.2-0.6 billion
Salmonella	0.7-3.8 Million	700-3,840	\$US 0.6-3.5 billion
Listeria	1,512 - 1,767	378-485	?

Emerging food-borne pathogens

Reservoir/

Source

Poultry, cattle

Cattle, sheep

Animals, Man

Environment,

Animals, Man

Typical Foods

Chicken, raw milk

Undercooked meat,

Meat, poultry, eggs,

Cheese, milk, coleslaw

vegetables, milk

dairy

Pathogen

Campylobacter

E. coli

Listeria

Salmonella

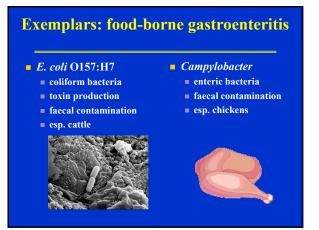
Dose

100

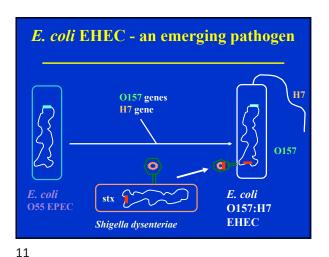
10

Varies

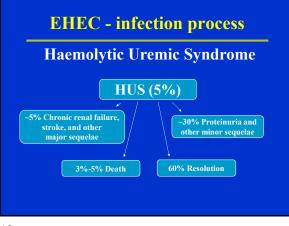
High


Emerging food-borne pathogens

- Various ecological questions need answering
 - Which foods transmit the infection?
 - How does the pathogen get into the food
 - How well does the pathogen persist in the food?
 - What are the animal reservoirs (if any)?
 - How do the animals themselves become infected?
 - Answering these questions leads to the development of a prevention strategy

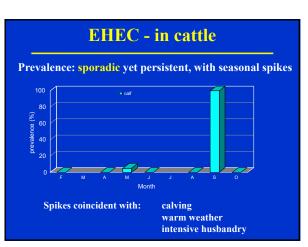

Food supply chain Primary Production gebeef, poultry Primary food processing g abattoirs, dairies Secondary food processing g Processing plants Food Retailing Food Retailing CONSUMPTION Food catering


8


Escherichia coli

cell surface (O antigen) eg. O157, O111

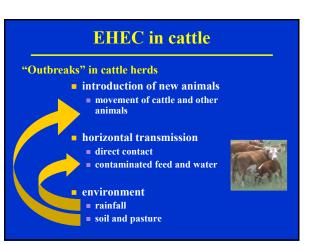
flagella


(H antigen) eg. H7

- commonly found in intestinal tract of humans/animals
- E. coli serotyping
- cell surface O antigens (> 175)
 flagella H antigens (> 50)
- most types do not cause
 disease
- some cause diarrhoeal
- disease/death • O157:H7
- enterohaemorrhagic (= EHEC)
 powerful Shiga toxin
 flagella adhesion

Factor	Potential sources of EHEC
Animal faeces	 Faeces from dirty animals supplied to abattoirs may pass onto meat Inadequately composted animal manure may spread Ec to fruit and vegetables
Slurry	 Slurry and run-off enters water supply and/or is used for vegetable production
Water	Contaminated water used in growing fruit and vegetables Contaminated water consumed by humans
Milk	Faeces entering milk during milking
Direct contact	 Farm families and visitors handling or petting animals and not washing hands

15


E. coli O157:H7

• CDC estimates:

• 73,000 cases + 61 deaths due to *E. coli* O157:H7 each year in USA

- Most infections associated with:
 - eating undercooked, contaminated ground beef
 - drinking raw milk
 - drinking contaminated water
- Meat can become contaminated during slaughter and grinding meat distributes the bacterium even further

14

EHEC - on farm control

Diet

- influence bacteria ■altering rumen pH
- ■volatile fatty acids ■ starvation ↑EHEC transport

■ feedlot grain

type of food

- supplementary hay

EHEC - on farm control

Primary processing sources of EHEC

Faeces on hide of carcass

Inadequate pasteurisation

contaminated water

Potential sources of EHEC

Post-pasteurisation contamination Washing of fruit and vegetables with

Vaccination

20

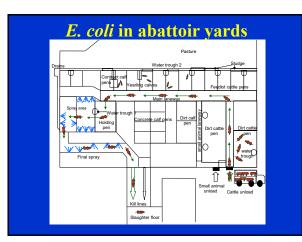
- prevent colonisation
- target mechanism of attachment
- but not all EHEC carry the target
- *E. coli* O157
- production of antibodies
- shedding not always reduced
- Costs & timing

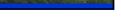
Factor

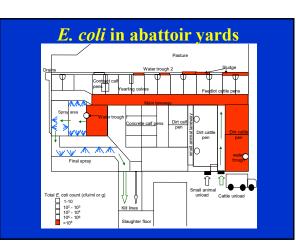
Abattoir

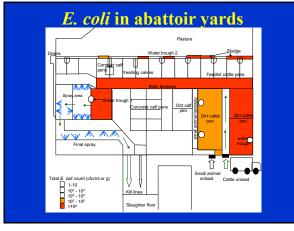
Packing plant

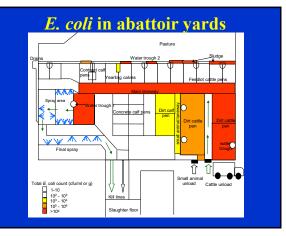
Dairy

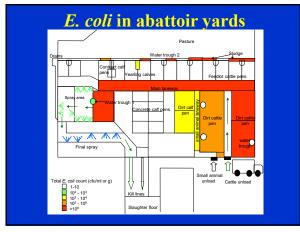

22

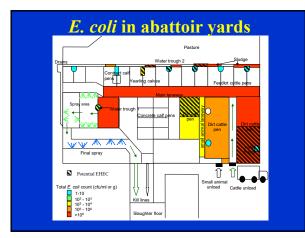


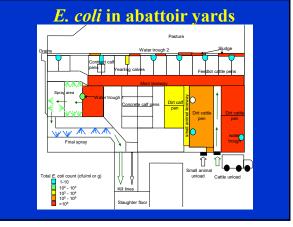






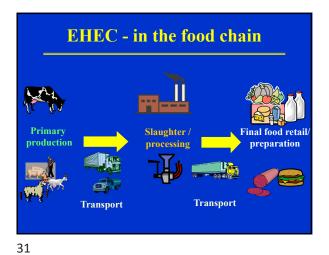


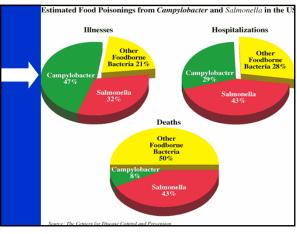




26

27

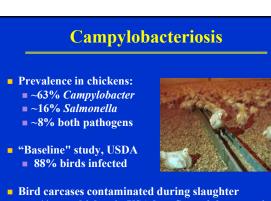


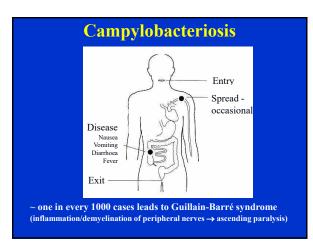

28

E. coli in abattoir

Control

- Assume all animals are potentially infected
- Reduce risk at all stages of processing
 - ensure coats of all slaughter animals are as free as possible from faecal contamination
 - ensure that faecal contamination of carcases does not occur at any stage of processing
 - Chill carcasses (prevent growth)




Campylobacteriosis

- Campylobacter jejuni
- ~2.4 million infections + 124 deaths each year
- commonly associated with handling/eating poultry
- also drinking unpasteurized milk
- small number organisms needed to cause infection
- chickens often show no sign of infection
- but transmit disease through
 - water supply
 - faecal contact

33

$> \frac{1}{2}$ raw chicken in USA has *Campylobacter* on it

34

Campylobacteriosis

Survival of Campylobacter

- poor replication outside gut
 - grows best at 37-42°C
 - grows best in microaerophilic environment (low oxygen)
 - sensitive to freezing
 - sensitive to drying
 - sensitive to acidic conditions (pH < 5)
 - sensitive to salinity
- **BUT can survive (without multiplying)**

Campylobacteriosis

- Intestines of poultry easily colonised
 - day-old chicks can be colonised
 - infective dose as low as 35 organisms
 - commercial operations colonised by 4 weeks
 - vertical transmission suggested but not proven
- Reservoirs in environment
 - unchlorinated drinking water
 - farm workers
 - birds
 - pests
 - feed unlikely (too dry)

37

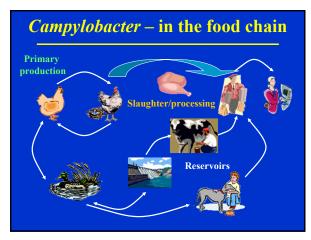
Campylobacteriosis

On farm control

- strict hygiene reduces intestinal carriage
 - birds drinking chlorinated water have fewer and lighter infections than those drinking non-chlorinated water
 - due to ease of contamination, probably impossible to completely eradicate
 - reduce susceptibility/stress?

38

Campylobacteriosis


- Control at processing
 - Prevent gross carcase contamination with faeces
 - Air chilling carcases
 - Minimise risk of environmental contamination (esp. water sources)
 - Decontaminate surfaces (chlorinated sprays)
 - Slaughter low-risk flocks first

39

What's examinable?

- Food-borne diseases
- animal reservoirs (zoonoses)
- Food supply chain
 - primary production (farm)
 - primary food processing (abattoirs)
 - secondary food processing
 - food distribution
- Faecal contaminants
 - on-farm control
 - processing plant control

