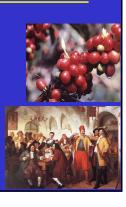
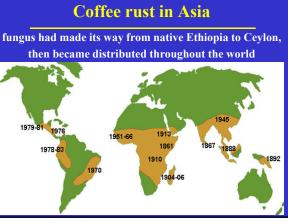



# **Plants**


- Plant Kingdom = majority of life-forms on Earth
- Contribute directly/indirectly to all human foods
- Only higher organisms that can produce sugars, proteins and fats from solar energy
- Diseases may destroy crops, reduce yield, render them unfit for consumption
- worldwide problem (annual loss in USA ~\$9billion)
- greater problem in developing countries

| Сгор     | % crop lost to disease |
|----------|------------------------|
| Cereals  | 9.2                    |
| Potatoes | 21.8                   |
| Fruits   | 12.6                   |


2

## **Coffee rust in Asia**

- Coffea arabica (arabica coffee)
- Coffea canephora (robusta coffee)
- originated as understorey plant in forests on mountains in Ethiopia
- first used as drink for medicinal purposes and in religious rituals
- crop of tropics (surpassed only by oil in value as world commodity)
- popular drink in Europe in 1600s 17<sup>th</sup> century coffee houses
- throughout Europe
- Dutch major coffee suppliers



4





**Historical Impact** 

- potato blight fungus
- 1943 great Bengal famine
- brown spot on rice 1900's ruin of chesnut timber industry
- chesnut blight
- 1860's coffee rust fungus

3



- coffee-growing region in world
- Ceded to British in 19th century British expanded plantations,
- stripping island of forests By 1870s, Ceylon was exporting ~
- 100 million pounds of coffee a year Appearance of "coffee leaf disease"
- in 1867 (fungus Hemileia vastatrix)
- No effective fungicides
- Spores resistant to desiccation, capable of long-distance movement
- In less than 20 years, many coffee plantations were destroyed



# **Coffee rust in Asia**

- British sent in plant pathologist H Marshall Ward
- Recommended use of fungicides (but sulphur ones
- available were not very effective)
- Studied life-cycle and identified spore germination stage as vulnerable stage
- Warned about the dangers of monoculture (continuous plantings over whole island had created perfect environment for epidemic)
- Vigour and productivity of coffee plantations declined to point where they were no longer economically viable

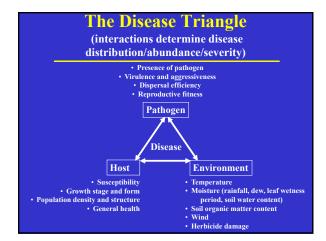


**SOLUTION – GROW TEA INSTEAD** 

7

# Study of plant disease involves:

- aetiology (causative agents)
- life-cycle (transmission/development)


**Plant Pathology** 

- epidemiology (dispersal in populations)
- pathogenesis (mechanisms of disease)
- manifestations (how plant affected)
- diagnosis (detection)
- treatment (therapy)
- prevention/control
- (prophylaxis/intervention/management)ecology (interactions between
  - pathogen plant environment)
- 8

# **Ecology of Plant Disease**

- natural ecology disrupted by agriculture
- conditions favouring disease inherent in agriculture
  natural controls have been removed
- diseases more destructive due to human activity
  - parallels between plant/animal/human diseases
  - urbanisation  $\rightarrow \uparrow$  population density  $\rightarrow$  outbreaks
  - epidemics are the cost of crowding


9

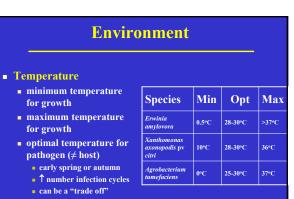


10

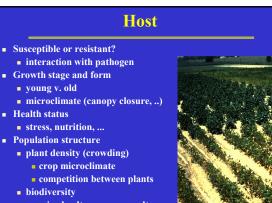
# Pathogen

- Actiological agents for plant diseases:
  - **Fungi: 60-70%**
  - Viruses: 10-15%
  - Bacteria: 5-10%
  - Nematodes: 1-5%
  - Miscellaneous parasitic plants (dodder, mistletoe...)




### Pathogen

- Occurrence (presence/absence)
   <u>contacts</u>, <u>barriers</u>, quarantine, ...
- Virulence (ability to cause disease)
- pathogenicity, aggressiveness
- Adaptability (fitness)
   competition
  - adapt to changing environment (reproductive efficiency)
  - evolve to overcome host resistance (new races)
- Dispersal (distribution)
- epidemics rapid, large areas
- Survival (e.g. over-wintering)
   spores, paratenic hosts, reservoirs
- Infectivity (success of transmission)
   number of infective propagules
  - priming (effect of environment)


# **Environment**

- Host + Pathogen  $\neq$  Disease
- NEEDS conducive environment
- Plant diseases are more common and severe in humid to wet areas
- Environment = atmosphere + soil
- Can be manipulated to exclude pathogen • e.g. wheat varieties bred to grow in drier environments

13



15



mixed culture v. monoculture

young v. old

biodiversity

Health status

Environment

- Moisture (most important for fungal and bacterial diseases)
  - Rainfall (duration, intensity, dispersal) Humidity
  - Dew
  - Leaf wetness (important for foliar pathogens)
  - Irrigation
- Moisture affects fungal:
  - spore formation
  - spore liberation
  - spore germination
  - penetration of host by the germ tube
- Moisture affects bacterial:
  - survival
  - multiplication
  - penetration

14

# **Environment**

#### • Wind

- Spread of the pathogen rapid epidemic spread
- wind-blown rain Host wounding
  - whiplash
  - most important for bacterial pathogens
- Acceleration of drying
- prevents infection

16

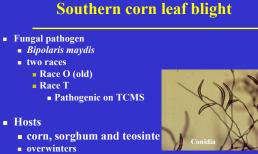


- Decreased overheads
- Increased productivity
- → MONOCULTURE



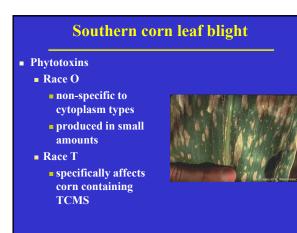


# **Monoculture**


- Advantages
  - uniform product
  - reduced contamination
  - ease of production
  - planting
  - management
  - harvest
- Dangers
  - increased vulnerability
- diseases pests (insects)
  - weather
  - pathogen dispersal
  - soil depletion
  - increased dependence on multinationals seed, pesticides

19

# Monoculture - Southern corn leaf blight


- By 1970, most diseases of corn thought to be under control "corn breeding"
- TCMS Texas cytoplasm male sterility
  - don't need to detassel widespread by 1970
  - 85% hybrid corn was TCMS
- BUT susceptible to Southern corn leaf blight
  - combination of pathogen, widespread susceptible hosts and favourable weather conditions throughout 1970s
  - epidemic estimated annual losses of \$1 billion.

20



- on crop debris, primarily on
- the soil surface, as mycelium, conidiospores and chlamydospores

21



# Southern corn leaf blight

- Conidiospores
  - windblown or splashed by water to fresh plant tissue in the spring
  - spores germinate on leaf surface and infect host directly through stomata
- Disease development favoured by:
  - warm ( 20-30°C) moist weather
  - presence of free moisture on leaf
- Fungus very prolific
  - able to complete life-cycle in 60-72 hrs under favourable weather conditions

22

# Southern corn leaf blight

- **TCMS** carries two cytoplasmically inherited traits
  - male sterility and disease susceptibility
  - two traits are inseparable and are associated with an unusual mitochondrial gene
    - T-urf13 encodes a 13-kD polypeptide (URF13)
  - interaction between fungal toxins and URF13 results in permeabilization of inner mitochondrial membrane

accounts for specific susceptibility to fungi

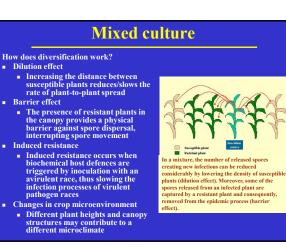
23

# Monoculture

- Disease in natural ecosystems
  - In nature the potential host is genetically diverse as are the pathogen populations barriers to dissemination
  - Epidemics are rare in the absence of a major disturbance

e.g. introduction of virulent pathogen



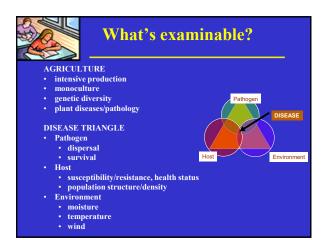

26

#### 25

# **Mixed culture**

- Rice blast
  - number 1 disease of rice
  - can contribute up to 99% of losses in production due to disease
  - caused by the fungus Magnaporthe grisea
  - has the ability to overcome host resistance

27






# **Mixed culture**

- Hypothesis (Zhu et al. Nature 2000)
  - Crop diversity/heterogeneity limits disease
  - Grew mixed rice varieties over a 2 year period
    - susceptible varieties gave 89% better yield and rice blast disease was 94% less severe than when grown in monoculture
    - Fungicidal sprays not necessary
  - Conclusions
    - Intraspecific crop diversification provides an ecological approach to disease control

28



Ch