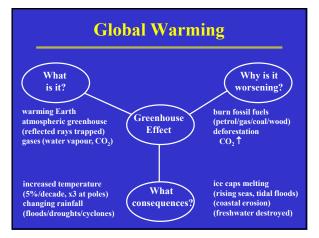


1

Global Warming


Book "The Weather Makers" Tim Flannery

- greenhouse gases (sources, properties, effects)
- history (carbon dating, fossils, ice cores, ocean sediments, coral growth)
- future impacts (rising sea levels, slowing of Gulf Stream, demise of Amazon rainforest, release of hydrates from sea-floor)
- Montreal Protocol (CFC success story)
- Kyoto Protocol (greenhouse emmision targets, carbon trading)

Video "Inconvenient Truth" Al Gore

- misconception: no scientific dissentic
- do not have to choose between economy and environment
- can do something about it! www.climatecrisis.net
- "Political will is a renewable resource!"

2

Global Warming

(1 wind, hurricanes, cyclones, typhoons ..)

• more vigorous hydrological cycle

(\downarrow soil moisture, \downarrow vegetation)

 \Rightarrow more severe weather, droughts, floods

(↑ rainfall, ↑ cloud cover, ↑ sea level)

3

Consequences

• more pressure cells

more evaporation

Global Warming

Elevation in temperature due to:

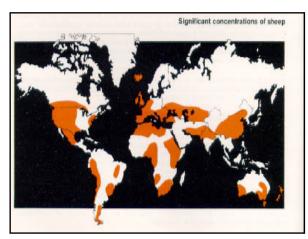
- fossil-fuel combustion increasing CO₂
- deforestation reducing CO₂ absorbtion
- industry and biomass burning increasing CO
- production of volatile organic compounds (butane, propane) that undergo photo-oxidation to form tropospheric ozone
- · doubling of atmospheric methane
- destruction of ozone layer by halogenated compounds

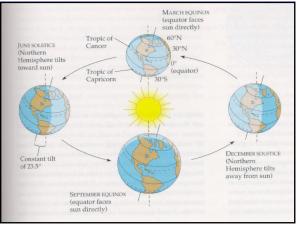
4

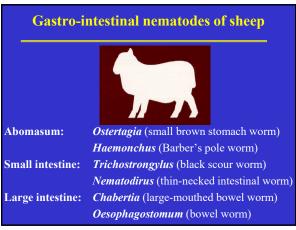
6

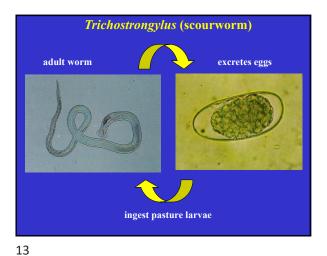
Disease patterns

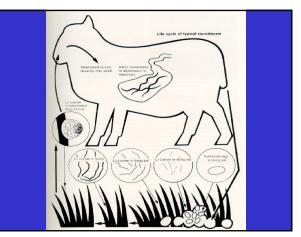
Many diseases will:

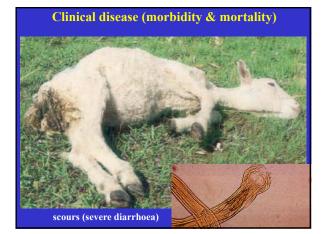

- increase in incidence
- occur more often (more hosts, more vectors)
- change from epidemic to endemic (become entrenched)
- increase in distribution
 - expanded geographic range (changing optima)
 - enhanced survival in environment (warm moist conditions)
- increase in severity
 - spread of drug resistance (uncontrolled dosing)
 - rapid transmission of virulent strains (transport)
 - increase in host susceptibility (diminished resistance)



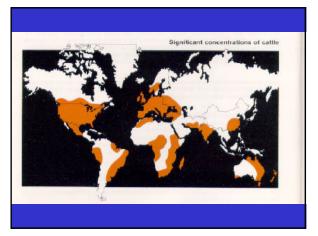

Latitudinal variation		
	Temperate	Tropics
Summer	hot, dry	warm, wet
Autumn	mild, dry	mild, moist
Winter	cold, wet	mild, dry
Spring	mild, moist	mild, dry

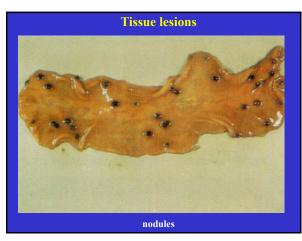






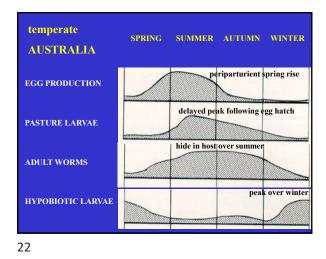
	Temperate	Tropics
Summer	adverse	ideal
	stay in host	seek new host
Winter	ideal	adverse
	seek new hosts	stay in host





severe production losses

19



20

Life cycle stages

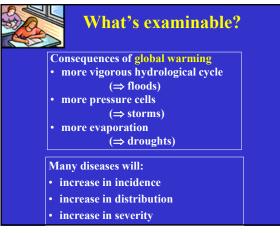
- worm eggs
 - (faecal examination eggs per gm)
- pasture larvae (pasture examination - larvae per Kg)
- hypobiotic larvae (hidden in mucosa)
- adult worm burden (post-mortem examination - counts)

21

Effect of Season		
TEMPERATE REGIONS	TROPICAL REGIONS	
• parasite load higher in hot summer – summer drenching	• parasite load higher in dry winter – winter drenching	
 hypobiosis over winter – nil control 	 hypobiosis over summer – nil control 	
 spring rise (periparturient rise) drench breeding ewes drench weaners rotational grazing mixed grazing 	 autumn rise (periparturient rise) drench breeding ewes drench weaners rotational grazing mixed grazing 	
Global warming will bring th	ne tropics to higher latitudes	

	Effect exacerbated
Hosts	- seasonal breeders - aggregated distribution
Vectors	- seasonal breeders - population explosions
Diseases	- seasonal occurrence - distribution boundaries

Seasonal peaks for arthropods


Arthropods

- cattle tick (greater in warm wet months)
- buffalo fly (greater following high rainfall)
- fly strike (greater following persistent rainfall wetting fleece)

<u>Arthropod-borne diseases</u> (ar-bo viruses) (mossies/midges/ticks)

- human viruses (Ross River, Barmah Forest, Murray Valley encephalitis, Kunjin, Japanese encephalitis, dengue)
- animal viruses (bovine ephemeral fever, blue tongue, Akabane)
- (disease incidence greater following heavy rains, flooding, tidal inundation due to increase in vector abundance)

25

27

Other pathogens

Effect of increasing temperature modelled for huge range of infectious diseases, especially:

- water-borne diseases (esp. bacterial)
- ruminant nematodes (trichostrongyles)
- geohelminths (ascarids, hookworms)
- snail-borne trematodes (blood/tissue flukes)
- vector-borne diseases
 - protozoa (malaria)
 - helminths (filaria)
 - arthropods (ticks, buffalo fly, fly strike)
- ar-bo viruses (JE, MVE, blue tongue)