



InteractionsPARASITEHOST- needs food supply- resist infection- place to develop- moderate disease- place to propagate- develop protectionImage: State of the state

3



### **Evolutionary arms race**

Host immune system works to:

- repel/destroy invaders
- undertake damage control
- protect against re-infection

Parasites develop survival strategies to avoid:

- innate immune responses
- acquired immune responses

4

### Pathology due to parasites

### Abnormalities arise due to:

- direct effects of parasites
  - structural (cell lysis, tissue trauma, lesions) – functional (loss, regulation, obstruction)
- host responses to infection
  - innate immune responses
    phagocytosis, antimicrobial proteins
    inflammation
  - acquired immune responses
  - humoral (antibodies)
  - cell-mediated (cytotoxicity)
  - hypersensitivity

| amocbae<br>flagellates<br>coccidia<br>ciliates | munity to prote  |                    | ozoan parasites<br>kinetoplastids<br>haemosporidia |  |
|------------------------------------------------|------------------|--------------------|----------------------------------------------------|--|
|                                                |                  | ~                  |                                                    |  |
|                                                | mucosal<br>mixed | humoral<br>B-cells | cellular<br>mø, T-cells                            |  |

7



8



9

### **Immuno-evasion**

**HIDE - CHANGE - SUBVERT** 

These strategies improve parasite survival (colonization, development, reproduction)

but still allows host immune system to limit disease and provide some protection

Remember: overt virulence resulting in host mortality is not in best interest of most parasites - better to be sneaky!

\_\_\_\_\_

nonspecific mechanisms

phagocytosis inflammation



### specific mechanisms

cell-mediated & humoral responses

### 11

### How do parasites survive it all?

- Become less aggressive (parasite - commensal - symbiote)
- Learn to avoid host immune system (evasion mechanisms)
- Host-parasite evolutionary arms race (middle ground = enzootic stability)

10

12

### Strategies to avoid INNATE responses

- kill phagocytes using toxins (common for bacteria, suspected for some parasites)
- best to avoid phagocytic lysis altogether
  - (common for protozoa)
  - develop in cytoplasm
  - parasitophorous vacuole
  - produce inhibitory proteins
  - produce anti-oxidants



13





14



15



**Inhibitory proteins** 

16







19

# <section-header><list-item><list-item><list-item><list-item>

20



## Infect host tissues where lymphocyte populations are absent or reduced

- gastro-intestinal lumen e.g. Giardia
- central nervous system e.g. Naegleria
- joints e.g. Onchocerca
- embryo e.g. Toxoplasma
- intragenomic e.g. Karyolysus
- intracystic e.g. hydatid cysts
- encapsulation e.g. Trichinella
- granuloma e.g. Schistosoma



21





<u>\_</u>

24

### **CHANGE 2: recombination**

### genetic shift

(well known for human/avian influenza virus)

# implicated for exceptionally virulent strains

- *Toxoplasma* RH (lacking cysts)
- *Giardia* 'Polly' (zoonotic, petechia)





25



26



27



### **SUBVERT 3: immunosuppress host**

- induction of suppressor cells
- proteinase destruction of host effector molecules
- inhibit host proteinases/cytokines
- malaria immunosuppression linked to downregulation of cytotoxic T cells



28