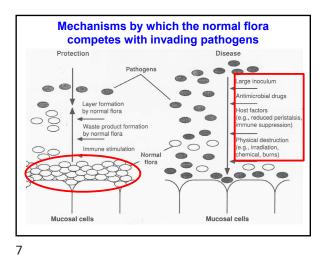
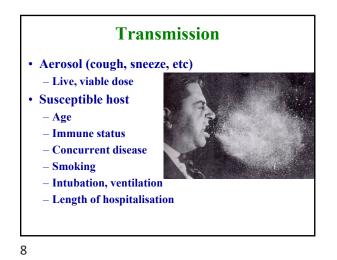
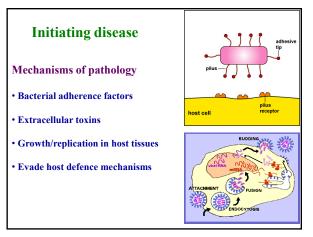
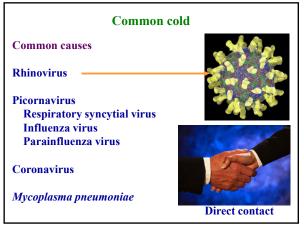


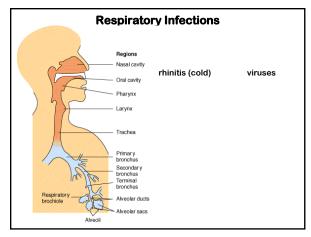
Microbiology of respiratory system Microbes present? URT? LRT? Why? 3

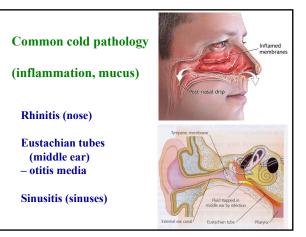


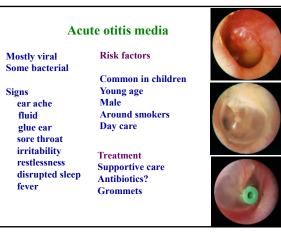

Respiratory tract defenses • Nasal structure Nasal hairs • Mucus • Ciliated epithelial cells • Cough reflex Secretory antibodies Normal flora

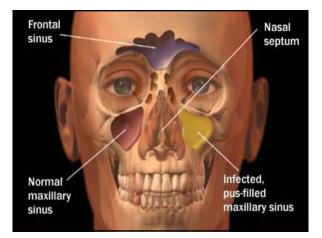

Which organisms are there as normal flora? Staphylococcus aureus Streptococcus pneumoniae Neisseria meningitidis Haemophilus influenzae "Diphtheroids" Corynebacterium spp. [not C. diphtheriae] and others (incl. Candida) **Compete for attachment sites**

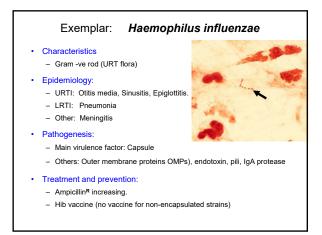

Produce bacteriocidal products

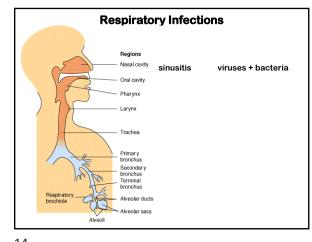


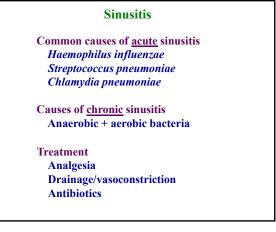


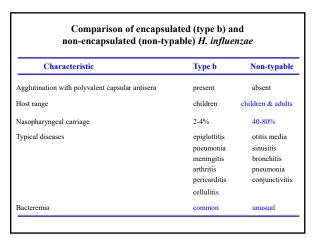


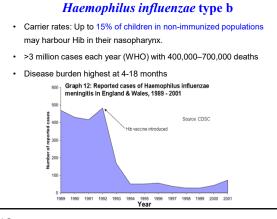


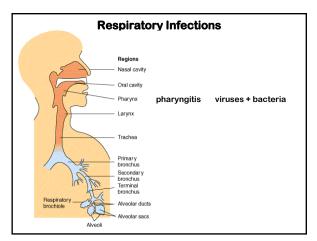


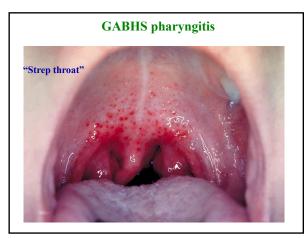


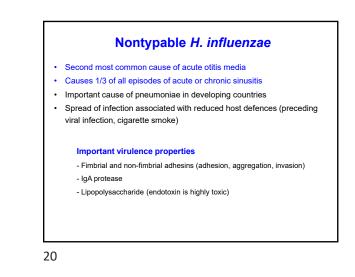


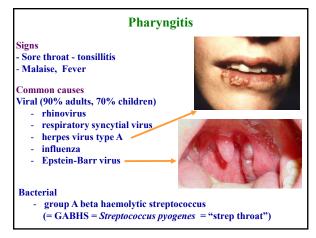


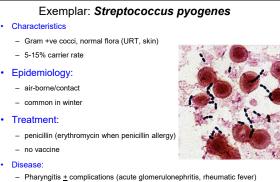


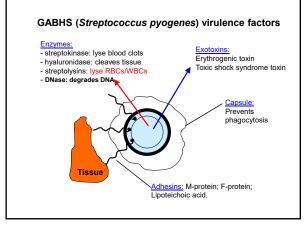


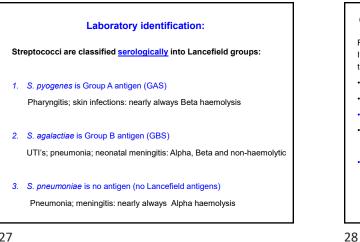




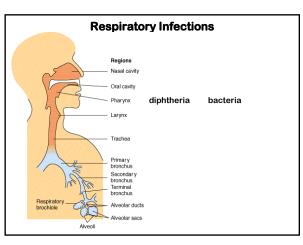


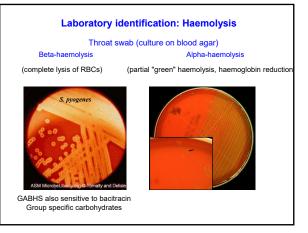

21


22

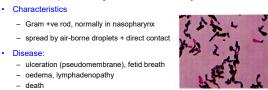


- Virulence factors: enzymes, exotoxins, capsule, adhesins

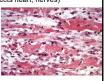

Treatment:

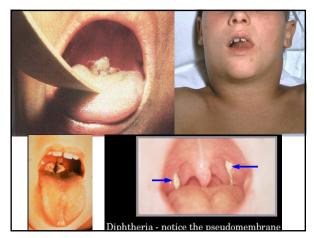

- no vaccine Disease:

27

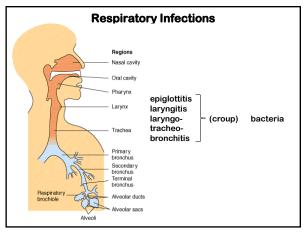


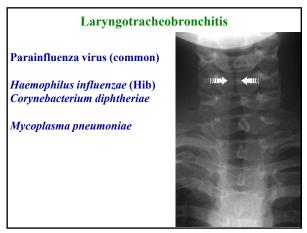
26

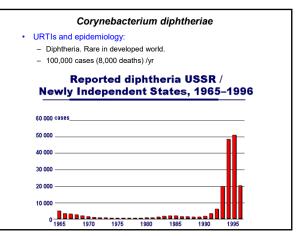

Exemplar: Corynebacterium diphtheriae

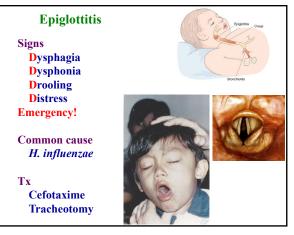

- toxin (inhibits protein synthesis, highly toxic, affects heart, nerves)

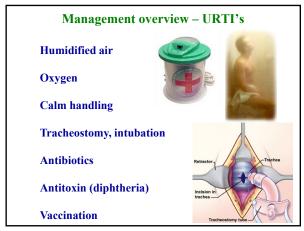
• Treatment:

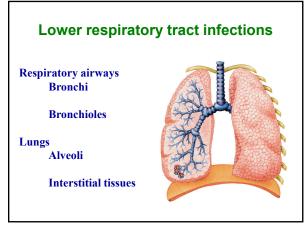

- anti-toxin (anti-serum) to neutralize toxin
- antibiotics (erythromycin)
- vaccination (toxoid = altered form of toxin) [part of DTP vaccine] [Almost eradicated in Australia]

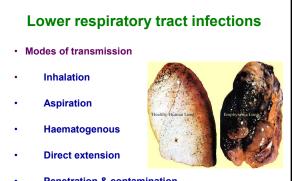


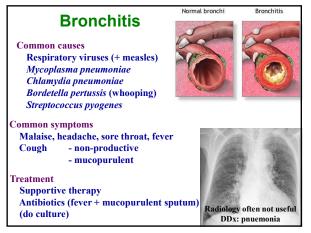


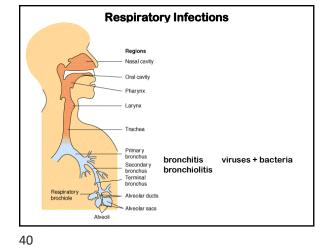


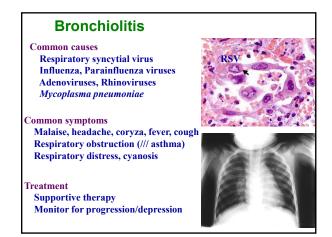


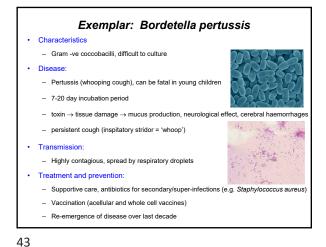


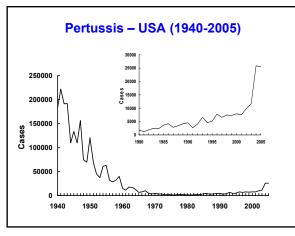


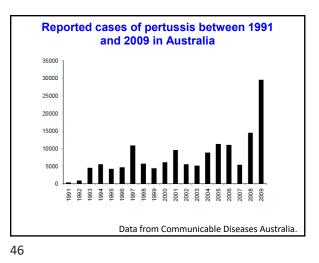

Upper respiratory tract infections				
Disease	Infecting organisms	Comments		
Common cold	Viruses, eg Rhinoviruses	Many serotypes		
Acute Otitis media	Viruses (esp. RSV)	Cause at least 50% of cases		
	S. pneumoniae, H. influenzae, M. catarrhalis S. pyogenes, S. aureus	Generally secondary infection, Most commonly nasopharyngeal residents, Fluid often persists in middle ear for weeks-months (glue ears)		
Acute Sinusitis	Etiology & pathogenesis similar to Acute otitis media			
Pharyngitis	Viruses	Cause approx 70% of sore throats		
	Streptococcus pyogenes	10-20% acute cases; sudden onset; mostly 5-10 yo		
	Neisseria gonorrhoeae	Often asymptomatic, usually via orogenital contact		
	Corynebacterium diphtheriae	Mild but toxic illness can be severe		
	Haemophilus influenzae	Epiglottitis		
Diphtheria	C. diphtheriae	Rare in developed countries (immunisation)		
Acute epiglottitis	H. Influenzae type b	Organism spreads from nasopharynx to epiglottis		
Laryngitis & Tracheitis	Parainfluenzae virus, RSV, GpA Strep, <i>H. influenzae, S. au</i>	Viruses cause most infections reus		

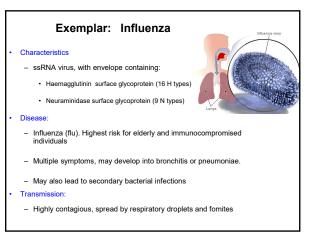





Penetration & contamination

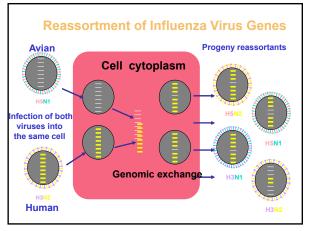




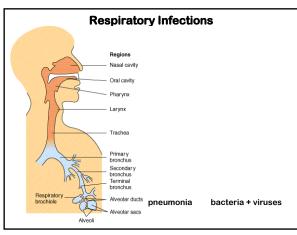


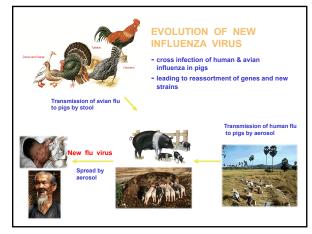
Surface glycoproteins H = haemagglutinin N = neuraminidase

Influenza

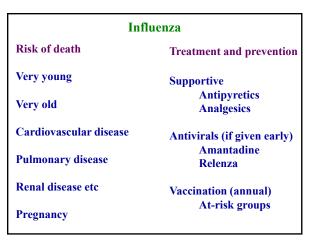

Type A (humans, animals, birds) - every 2-3 years Type B (humans only) - every 4-6 years

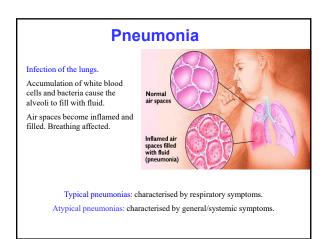
Overall mortality ~ 1% BUT

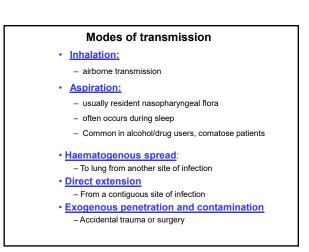

epidemics (pandemics) killed millions


H1N1 Spanish flu (1918) 40m deaths H2N2 Asian flu (1957) 2m deaths H3N2 Hong Kong flu (1968) 1m deaths H1N1 Russian flu (1977) no pandemic H5N1 bird flu (1997) 6 deaths

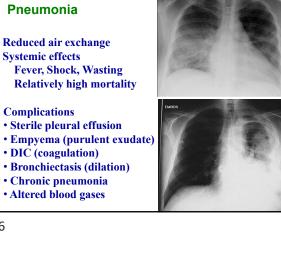
49

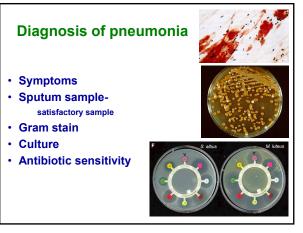



51



50




Pneumonia				
• Acute illness	• CURB65 (1 pt for each)			
 Radiological shadowing 	Confusion			
• Setting	• Urea (>7)			
• community-acquired	Respiration (>30)			
 nosocomial 	• Blood pressure (<90)			
 aspiration 	• age >65			
 immunocompromised 	[4-5 pts \rightarrow 40% mortality]			

57

	Pneumonia
Cau	ses – children
	Group B streptococcus
	RSV
	Chlamydia trachomatis
	Mycoplasma pneumoniae
	Influenza virus
Cau	ses – adults
	Mycoplasma pneumoniae
	Streptococcus pneumoniae
	Haemophilus influenzae
	- immunocompromised
	Gram negative organisms

58

56

Typical pneumonias

Community acquired Streptococcus pneumoniae (most common) Haemophilus influenzae Klebsiella pneumoniae Neisseria meningitidis

Atypical pneumonias

Mycoplasma pneumoniae Chlamydia pneumoniae Legionella pneumophilis

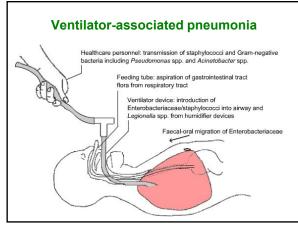
Viruses (influenza)

Fungi

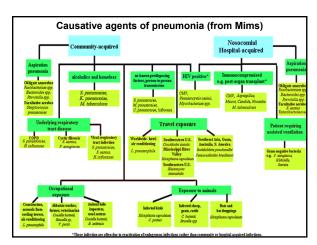
Nosocomial pneumonia

Prevalence

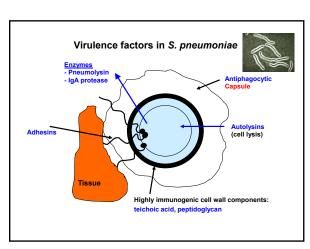
0.5 – 5% hospitalised patients higher in ICU, postoperative patients


Organisms

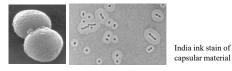
Gram -ve bacilli (microaspiration during sleep)


Antibiotic resistance Recent antibiotic therapy Longer than 2 days in hospital Immune suppression Bronchiectasis (dilation) Ventilator-associated pneumonia High mortality – 40% Causes ARDS Predisposing Endotracheal tube Muscle relaxants Pre-existing sinusitis, pharyngitis


62


61

63



Polysaccharide capsule

- >90 serotypes
- 80% of invasive disease in children caused by 7 serotypes (4, 6B, 9V, 14, 18C, 19F, and 23F)
- major virulence factor: capsule (interferes with phagocytosis)

capsular material

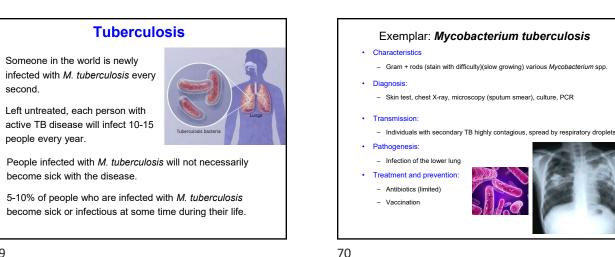
- Increases virulence by 100,000-fold
- Highly antigenic (immunity directed against capsule)

67

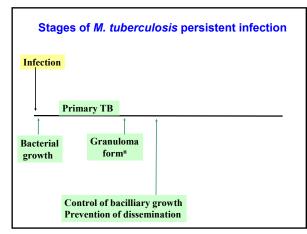
second.

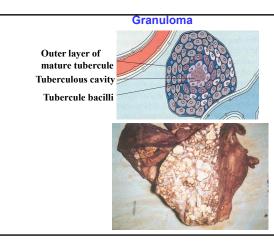
people every year.

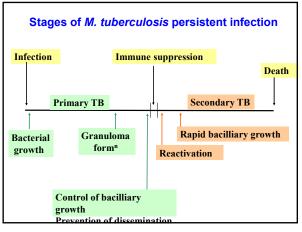
Pneumococcal vaccines


· 23-valent (Pneumovax)

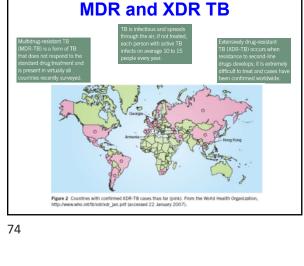
- Covers the about 90% of disease in adults
- Doesn't work in children <2 years of age (because they do not respond to T cell-independent antigens)


7-valent (Prevenar)


- A new conjugated pneumococcal vaccine
- Covers about 80% of disease in children in the U.S.
- Over 90% protective against invasive disease with bacteremia. Less protective against otitis media and colonization.
- Costs \$200 \$300 US dollars/child for the recommended 4 dose series of injections.


68

69



- · Diagnosis of latent or clinically undeclared TB
- · Most useful in countries with low disease incidence
- · +ve test after recent -ve indicates recent exposure
- Injection of proteins made by *M. tuberculosis* (tuberculin)
- · Purified protein derivative (PPD) derived from broth cultures
- · Mantoux test: most accurate, delivers defined dose

75

Exceptions

· False negative reactions

- persons recently infected with TB
- elderly, debilitated and immunocompromised (e.g. AIDS) patients · May be unresponsive
- In some patients, the reaction may be negative even though TB disease is present

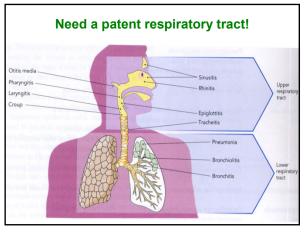
· False positive reactions

- may result from exposure to "atypical" mycobacteria, which cause different patterns of infection and disease
- · Important because treatment is different
- person has been vaccinated

76

Prevention of TB

• BCG vaccine (Bacille Calmette-Guerin), available since 1920's


- Attenuated bovine strain (M. bovis)
- Vaccine used in endemic regions
- Causes person to convert to positive skin test
- Not used in countries with low incidence of TB

Pros: Low cost, effective in young children.

Cons: variation in potency of live vaccines, variation in effectiveness among adults, potential for disseminated BCG in HIV infected individuals, effect on skin test reaction to tuberculin.

- · Elimination of disease highly unlikely
- · Control by active surveillance, intervention & monitoring

	Lower respiratory tract infections		
Disease	Infecting organisms	Comments	
Bronchitis Bronchiolitis	Respiratory viruses, esp. RSV, influenza, adeno & rhinoviruses Mycoplasma pneumoniae, Streptococcus pyogenes	Malaise, headache, sore throat, fever cough (non-productive or mucopurulent), supportive therapy	
Whooping cough	Bordetella pertussis	mucus - inspiratory stridor (whoop) toxin, tissue damage vaccination available	
Influenza	Orthomyxoviruses	Haemagglutinin/Neuramidase proteins genetic mixing (bird/human in pig) variable symptoms (bronchitis-pneumonia)	
Pneumonia	Streptococcus pneumoniae Haemophilus influenzae Mycoplasma pneumoniae Chlamydia pneumoniae	typical/atypical disease, acute illness radiological shadowing, respiratory distress community-acquired (CUR865), nosocomial, ventilator, immunosuppressed	
Tuberculosis (TB)	Mycobacterium tuberculosis	primary TB, granuloma, secondary TB skin test, vaccination multi-drug resistance (extensively DR)	

