

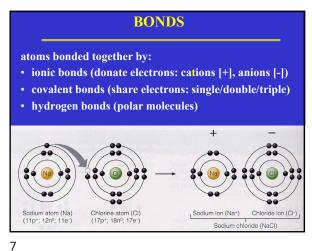
LEARNING OBJECTIVES

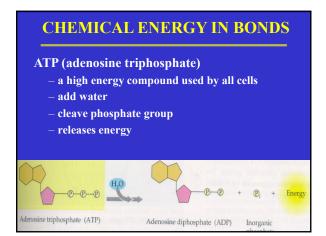
Lecture 2: Overview of Metabolism (Biochemistry)

- revise atomic composition of all matter
- understand metabolic sources of chemical energy
- identify macromolecules of life (sugars, fats, proteins, nucleic acids)

2

PERIODIC TABLE elements vary in atomic composition Hydrogen 1H ((


MOLECULES mixtures of atoms (water = H_2O , salt = NaCl) solutions (solvent/solutes) (homogeneous mix) • suspensions (heterogenous mix) (will settle out) colloids/emulsions (heterogenous mix) (will not settle out)


CHEMICAL EQUATIONS

Reactants **Products** NaOH + HCl ↔ NaCl + H₂O (caustic soda) (acid) (salt) (water)

- exchange/displacement (atoms/groups/..)
- reversible (two way reactions)
- balanced equation (stoichiometry)
- redox reactions
 - oxidation (reaction with oxygen)(lose e')
 - reduction (removal of oxygen)(gain e')

5 6

8

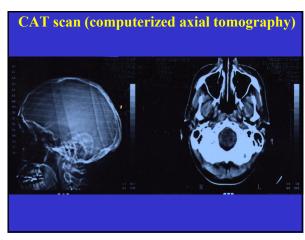
What is ENERGY? concepts: (Einsteins law of conservation of energy) matter has mass (occupies space) - solid, liquid, gas - no mass (does not occupy space) energy - kinetic (active), potential (stored) - chemical (e.g. ATP) - electrical (e.g. charged particles) - mechanical (e.g. movement) - radiant (e.g. electromagnetic)

RADIANT ENERGY isotopes (altered composition), heavier isotopes unstable, spontaneously decay, emitting radioactivity: alpha (α) particles (2p+2n packets) beta (β) particles (electron-like) gamma (γ) particles (electromagnetic energy) Hydrogen (1H) Deuterium (2H) Tritium (3H) (1p+; 1n0; 1e-)

10

9

RADIANT ENERGY WAVELENGTHS 400 nm 700 nm 10⁻⁵ nm 10⁻³ nm 1 nm 10 nm 10⁶ nm 10³ m cosmic gamma X-rays infra-red radio UV visible violet indigo blue yellow orange 400 nm 500 nm 600 nm 700 nm


APPLICATIONS Medical imaging • X-ray (radiograph) • Ultrasound (sonography) • CT/CAT (computerized axial tomography) • MRI (magnetic resonance imaging)

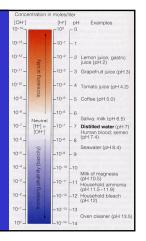
11 12

13 14

15 16

Back to
CHEMICALS OF LIFE

WATER (H2O)
physical states
• liquid (water)
• gas (vapour)
• solid (ice)
essential to life
• high heat capacity
• reactant (hydrolysis)
• universal solvent


17 18

SOLUTES

- salts (electrolytes) dissolved in water
- important for osmotic balance, pH buffering, regulation of membrane permeability
- cations
 - sodium Na+, potassium K+
 - calcium Ca++, magnesium Mg++
- anions
 - chloride Cl
 - bicarbonate HCO₃-

ACID-BASE BALANCE

- measured on pH scale
- negative logarithm of hydrogen ion concentration -log[H⁺]
- physiological saline pH 7.4

9

19

MACROMOLECULES

(organic molecules > 1,000 MW)

Living organisms consist of 4 main chemicals:

- carbohydrates (sugars)
 (composed of mono-, di-, poly-saccharides)
- proteins (composed of amino acids)
- lipids (fats/oils)
 (composed of fatty acids)
- nucleic acids (composed of nucleotides)

СН₂ОН Н С—О Н

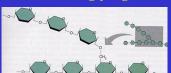
20

CARBOHYDRATES

Blood glucose

- ingested foods digested by enzymes
- · taken up by small intestine
- stored in liver as glycogen
- metabolism under hormonal control (insulin)
- major disorder
 - diabetes (hyper/hypo-glycaemia)

21


22

Glucose

С₆H₁₂O₆

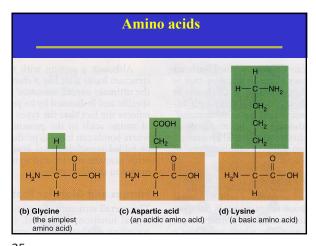
stored as glycogen

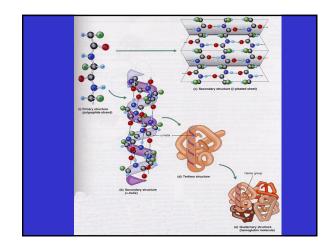
COH HC OH HO HOH HOH HOH

• SI

PROTEINS

Polymers composed of up to 20 amino acids


Classified according to structure:


- primary (amino acids)
- secondary (α-helix)
- tertiary (folding) monomers
- quaternary (combination) dimers, etc

or classified according to chemical class

- simple (amino acids)
- conjugated (metalloproteins, nucleoproteins, lipoproteins, phosphoproteins, glycoproteins)

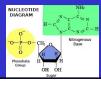
23 24

Triglyceride

Phospholipid

25 26

LIPIDS


Comprise:

- long-chain fatty acids (stored as triglycerides lipoproteins)
- phospholipids (constituents of membranes)
- cholesterol (precursor of steroid hormones, bile acids)
- insoluble, rely on proteins for transport
- synthesized in most tissues (esp. liver)
- problems hyperlipidaemia (viscous plasma)

27

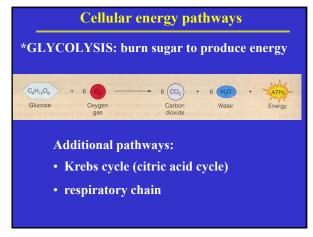
NUCLEIC ACIDS

- DNA/RNA composed of Adenine/Thymine, Guanine/Cytosine
- Structural unit (nucleotide) composed of
 - N-containing base,
 - pentose sugar (ribose/deoxyribose in RNA/DNA),
 - and phosphate group

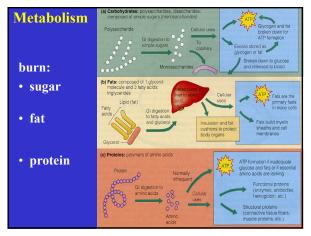
METABOLISM

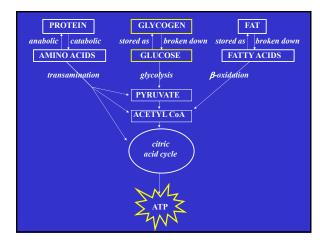
2 fatty acid chains (nonpolar end)

• break down organic substances to derive chemical energy


Phosphorus-containing group (polar end)

28


- assemble low MW precursors into polymeric components
- form and degrade biomolecules for specialized functions


 $\begin{array}{lll} anabolism & = synthesis & (requires E) \\ catabolism & = breakdown & (\underline{produces E}) \end{array}$

29 30

31 32

33 34

Structure: humans are composed of tissues and organs (learn names and relationships) Function: humans are complex chemical reactions (learn basic metabolism) (do not rely on media views of diets)