

1

2

3

Population ecology

- distribution
- temporal (any time frame, but esp. seasonal)
- spatial (any space, but esp. regional)
- abundance
- size (number)
- density (number/area)
- concentration (number/volume)
- intensity (e.g. number parasites/host)
- prevalence (e.g. proportion infected)
- incidence (change in prevalence over time)

4

Population growth

Dynamics (change in number of individuals)
Dependent on:

- births (reproductive potential)
- deaths (natural/parasite-related)
- migration (immigration/emigration)

Kinetics (change over time)

Dependent on:

- time-frame (step-wise/continuous)
- resource limitations (constrained/unconstrained)

5

6

7

8

9

Simultaneous equations

$E_{i+1}=0 E_{i}+0 L_{i}+0 P_{i}+1,000 A_{i}=1,000 A_{i}$
$L_{i+1}=0.05 E_{i}+0 L_{i}+0 P_{i}+0 A_{i}=0.05 E_{i}$
$P_{i+1}=0 E_{i}+0.1 \mathrm{~L}_{i}+0 \mathrm{P}_{i}+0 \mathrm{~A}_{i}=0.1 \mathrm{~L}_{i}$
$A_{i+1}=0 E_{i}+0 L_{i}+0.6 P_{i}+0 A_{i}=0.6 P_{i}$

10

11

Matrix multiplication

assume population $\mathrm{N}_{0}=100 \mathrm{E}, 50 \mathrm{~L}, 10 \mathrm{P}, 2 \mathrm{~A}$

12

Population growth

- vital statistics of populations (changes over time)
- individuals join (births and immigration)
- individuals leave (deaths and emigration)
$P_{2}=P_{1}+$ (births + immigration) - (deaths + emigration)
- assume closed population (no migration)
$P_{2}=P_{1}+$ (births - deaths)
that is, population is proportionate to:
- current size (P_{i})
- growth rate (r) (= birth rate - death rate)

13

14

Logistic growth

growth constrained
carrying capacity (K) determined by available resources

15

16

Epidemiology?

Like ecologists, epidemiologists seek to understand:

- species richness (biodiversity)
- species abundance (populations/communities)
- species distribution (temporal, spatial)

17

Epidemiology

Study of occurrence, spread and control of diseases

- Prevalence (number infected)
- Incidence (change in prevalence over time)
- Distribution (density, intensity, concentration,..) exhibit longitudinal fluctuations (esp. seasonal) influenced by many factors:
- demographic, socioeconomic, behavioural
- geographic, climatic

Epidemiological studies

Four main types:	Maths
- Case series (descriptive) - index, incidental, miscellaneous	not quantitative
- Case control studies (retrospective) - cases + controls interviewed	statistics Odds Ratio
- Cohort studies (prospective) - cohort followed forward in time	statistics Relative Risk
- Outbreak studies (predictive) - rate of change in population	calculus Differential Equations

19

20

OUTBREAKS

Pathogens must reproduce themselves to survive (reproduction rate $=R$)

Basic (case) reproduction rate (Ro)
= average number of secondary infections resulting from primary case in susceptible population

21

BUT, nothing is IDEAL

Population varies in susceptibility

- proportion just infected (latent)
- proportion patent (infectious)
- proportion immune (resistant)
- proportion lose resistance (susceptible)
- proportion die
- proportion migrate
- etc
\Rightarrow all influence Ro
\Rightarrow need to stipulate model [e.g. SIR model]

22

Micro-parasites

viral, bacterial, protozoal pathogens

- reproduce quickly to reach high intensities
- thus causing acute transient infections
- often limited by host immune responses
- recovered individuals develop protective immunity
population dynamics driven largely by transmission rate (contact between susceptible and infected individuals)
- famous SIR model

24

25

Disease prediction models

26

Macro-parasites

helminths and arthropods

- cause chronic and persistent infections
- disease depends on number present (which in turn depends on exposure to free-living infective stages)

But many infections over-dispersed
(a few hosts have most of the parasites),
so must track intensity of infection

- Anderson \& May model: infective stages short-lived
- Dobson \& Hudson model: hypobiosis (larval arrest)

Anderson \& May HPW model
Host population, Parasite population (adults), free-living stages (W)

28

29

Disease prediction models

How many will get infected?
How many will get sick/die?
How many will recover?
How many will get re-infected?
When?

What can be done?
Preparedness?
Impact of hospitalization/quarantine?
Impact of treatment/vaccination?
Impact of preventive interventions?

