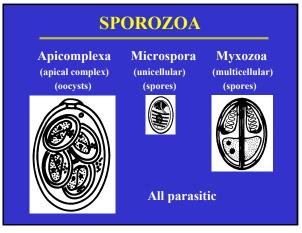
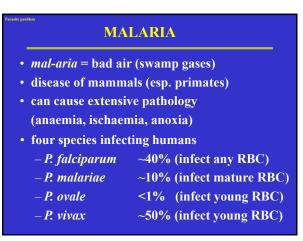
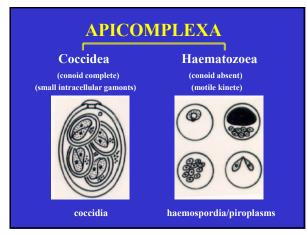
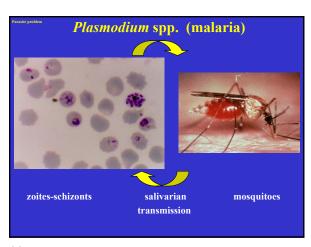


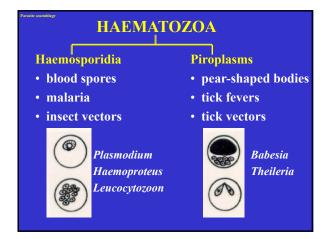
PROTOZOA 65,000 species (31,250 extant + 33,750 extinet) flagellates amoebae sporozoa ciliates 6,900 species 11,550 species 5,600 species 7,200 species 5,100 free-living 11,300 free-living 4,700 free-living 1,800 parasitic 250 parasitic all parasitic 2,500 parasitic

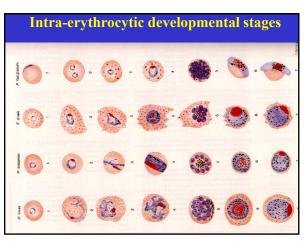

2

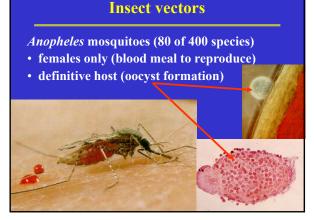


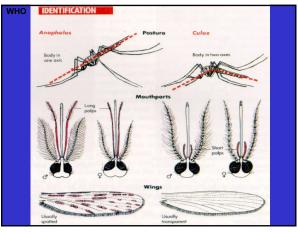


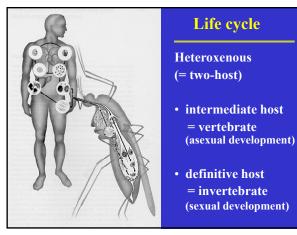

Impact of parasites

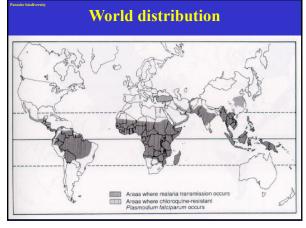

- range of protozoa parasitize RBC &/or WBC
- multiply and released by destroying host cells
- causing range of haematological abnormalities
- compromise blood function (gas, nutrients, ..)
- may disturb blood delivery (vascular changes)
- burden quantitated as % parasitaemia









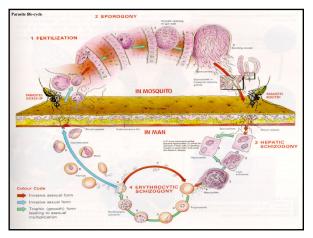


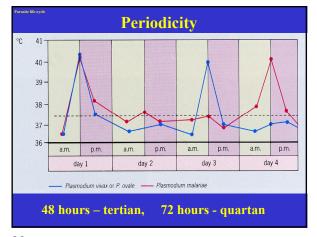
16

14

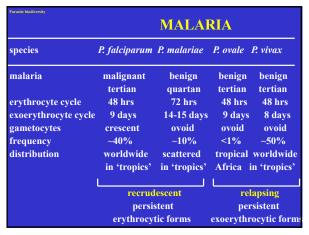
Haematophagous vectors					
Parasite	Vertebrate host	Invertebrate vector			
P. falciparum	humans	Anopheles			
P. malariae	humans, monkeys	Anopheles			
P. ovale	humans	Anopheles			
P. vivax	humans	Anopheles			
P. knowlesi	Asian monkeys, humans	Anopheles			
P. coatneyi	Asian monkeys, humans	Anopheles			
P. cynomolgi	Asian monkeys, humans	Anopheles			
P. simium	New World monkeys	Anopheles			
P. gallinaceum	chickens	Aedes, Culex			
P. juxtanuclear	e chickens	Culex			
P. relictum	pigeons	Culex, Aedes, Anophele			
P. berghei	rodents	Anopheles			
P. wenyoni	snakes	Culex			
P. agamae	lizards	Lutzomvia, Culicoides			

17

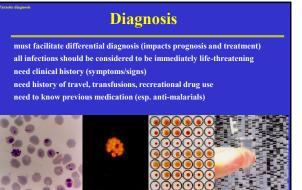

Malaria in Australia <1800 - malaria probably not endemic in Aboriginal population >1800 - introduced by European settlers, sporadic occurrence - became entrenched in settlements around mine sites - records confused, all fevers recorded as 'ague' - Aust. Inst. Tropical Medicine, Townsville


- mapping of malaria in Australia (endemic above 19°S) 1922 [mostly P. vivax transmitted by Anopheles farauti] - Sydney School Public Health & Trop. Med. - WWII, returning soldiers 1930

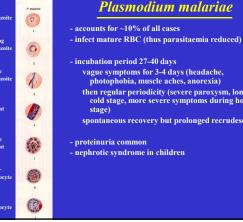
- WWI, returned soldiers


- 1940
- 1943 - Land HQ Medical Research Unit, Cairns
- QIMR = Queensland Inst. Med. Res., Brisbane
 WEHI = Walter & Elisa Hall Inst., Melbourne 1946
- 1974 1981 - WHO declares Australia malaria-free
- >1990 miscellaneous cases (travellers, airport, Torres St...)

1911



20


Giemsa fluorescence serology

PCR

22

23

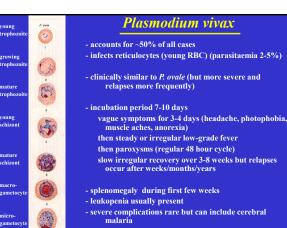
Plasmodium malariae

- vague symptoms for 3-4 days (headache, photophobia, muscle aches, anorexia) then regular periodicity (severe paroxysm, longer cold stage, more severe symptoms during hot
- spontaneous recovery but prolonged recrudescence

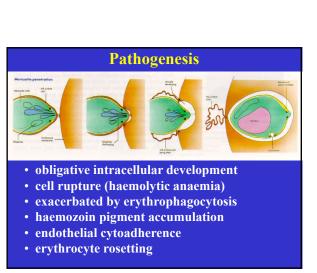
Plasmodium ovale

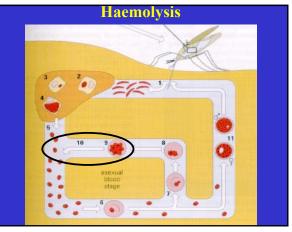
- accounts for ~1% of all cases - infects reticulocytes (young RBC) (parasitaemia 2-5%)

 clinically similar to *P. vivax* (but less severe and relapses less frequently)

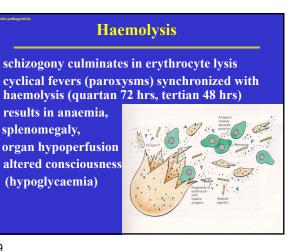

 - incubation period 7-10 days
 vague symptoms for 3-4 days (headache, photophobia, muscle aches, anorexia)
 then steady or irregular low-grade fever

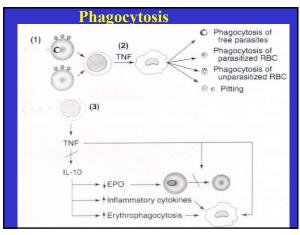
then paroxysms (regular 48 hour cycle) spontaneous recovery after 6-10 paroxysms although relapses can occur after weeks/months/years

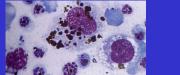

- splenomegaly during first few weeks - leukopenia usually present

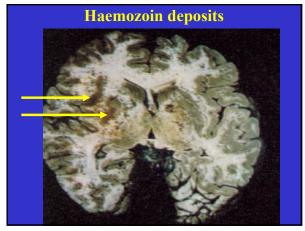

- severe complications rare

25




26




28

Haemozoin deposits

• haemozoin = malaria pigment (β -haematin)

• proteolysis produces monomeric toxic heme

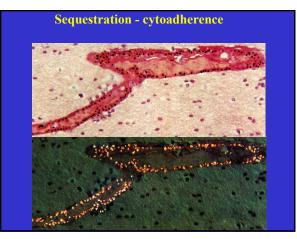
• produced in food vacuole of blood-stages

• parasites actively degrade haemoglobin

parasite unable to cleave porphyrin ring

• inert crystalline substance

(ferriprotoporphyrin IX)

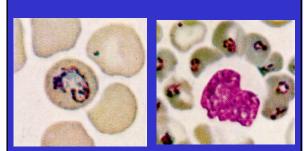

· heme detoxified by conversion to

insoluble haemozoin polymer

32

Sequestration - cytoadherence

34


35

Sequestration

- mediated by stickiness = cytoadherence infected RBC with knob-like protrusions due to parasite-encoded protein deposits
- interaction with specific receptors involving:
 - CSA (chondroitin sulphate A
 - PECAM-1 (platelet-endoth. cell adhesion mol. 1)
 - ICAM-1 (intercellular adhesion molecule 1)
 - HS (heparan sulphate)
 - CD36 (sequestrin)
 - TSP (thrombospondin)

Rosetting

clumping of infected and uninfected cells cell

37

TREATMENT OF MALARIA 1660 - Peruvian Indians use 'fever tree bark' (Cinchona tree) 1820 - Quinine isolated from bark 1914-18 - WWI quinine shortage prompted work on synthetics 1928 - Pamaquine 1932 - Mepacrine 1934 - Chloroquine 1939-45 - WWII shortages 1945 - Proguanil 1951 - Pyrimethamine - Emergence of chloroquine resistance 1960 1960 - Sulphonamides, Sulphones 1971 - Mefloquine 1974 - series of new compounds from USA

1979 - Artemisinin developed in China

40

Rosetting

- clumping of uninfected and infected RBC forming flower-like rosettes
- interactions involve:
 - PfEMP1 (P. f. erythrocyte membrane protein 1)
 - CR1 (complement receptor 1)
 - blood group A antigen
 - immunoglobulin M
- occasional DIC (disseminated intravascular coagulation) platelet activation, thrombus formation, obstruction, tissue anoxia

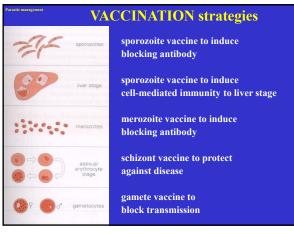
38

Cumulative effect

- haemolytic anaemia
- exacerbated by erythrophagocytosis
- haemozoin pigment accumulation
- endothelial cytoadherence
- disseminated intravascular coagulation (DIC)
- all contributing to tissue anoxia through compromised function and reduced flow

 cell pathology → anaemia → anoxia
 - vessel pathology \rightarrow ischaemia \rightarrow anoxia

ratic transmit Chemotherapy					
	TISSUE STAGE		BLOOD STAGE		
	primary	latent	schizonts g	amonts	
Quinine			+++	++	
Chloroquine			+++	++	
Proguanil	++		++	++	
Pyrimethamine	++		++	+++	
Sulphadoxine/Dapsone	?				
Primaquine	++	+++	++	+++	
Doxycyline		?	++		
Mefloquine			+++		
Halofantrine			+++		
Artemisinin			+++	+	
	causal prophylaxis	antirelapse radical cure	suppression clinical cure	prevent spread	


TREATMENT OF MALARIA					
ON-RESISTANT MAL	target				
Attack	chloroquine	blood schizonts			
Recrudescence (f/m) Recurrence (v/o)	chloroquine primaquine	blood schizonts tissue zoites			
Prophylaxis	pyrimethamine combinations	tissue/blood schizonts			
	combinations	schizonts			
RUG-RESISTANT MA		schizonts			
<u>RUG-RESISTANT MA</u> Attack		blood schizonts			

VACCINATION

Case for Vaccine?

- immune response complex and poorly understood
- natural infection not highly protective
- immunity species- and strain-specific
 immunity short-lived
- premunition/concomitant immunity already active in high-endemic zones
- enzootic stability destabilised by vaccine
- logistics of provision: frequency, expense
- provider?

