

DIAGNOSIS OF WHAT?

- INFECTION (presence of parasites)
 - stage: incubation, latent, pre-patent, patent
 - type: cryptic, occult, ectopic...
 - consequences: asymptomatic, subclinical, clinical
- DISEASE (perturbation in structure/function = pathology
 - onset: fast / slow (acute / chronic)
 - duration: transient / prolonged (acute / chronic)
 - manifestations: symptoms / signs
 - severity: mild to fatal

2

Diagnosticians

Clinicians / Practitioners (medical / veterinary)

supported by:

- health-carers (e.g. nurses)
- laboratories (e.g. scientists / technicians)

"Dx is central intellectual activity of medicine!"

process to turn data about patient into names of diseases

- serves as a guide to action / intervention (Mx, Tx)
- helps foretell future (prognosis)

D^x process

Difficult to teach clinical reasoning

· quite intuitive, experiential, reflective...

Nevertheless, begin with basic systematic process:

presentation - main complaint

н

4

history - medical, morbid state

data - physical examination

- laboratory tests

3

Knowledge integration

HOST IDENTITY:

- medical
- veterinary

SIGNS OF DISEASE:

- enteric
- vascular
- visceral

SITE OF INFECTION:

- gut
- blood
- tissues

TRANSMISSION CYCLE:

- faecal-oral
- vector-borne
- predator-prey

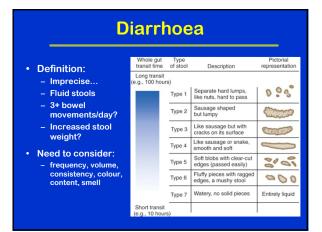
Test matrix (samples) ante-mortem post-mortem fomites fluids tissues

5 6

Parasitology diagnostic tests

Direct detection of parasites

- macroscopic examination (visible characters)
- microscopy (live/fixed, contrast/stained, fluorescence)
- culture (in vitro, in vivo, xeno-Dx)
- imaging (X-ray, ultrasound, CT, MRI)


Indirect indication of disease

symptomatology (fever, inflammation, wheeze, etc...)

<u>Indirect</u> demonstration of parasite products/host responses

- haematology (FBC, ESR, differential, etc...)
- biochemistry (plasma/serum, liver/muscle/gut, etc...)
- serology (host antibodies, parasite antigens)
- molecular biology (parasite proteins/DNA/RNA)

7 8

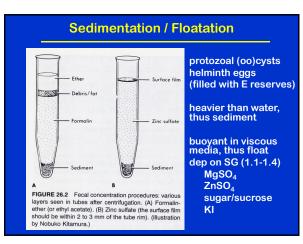
General Syndromes

Coprology
(working with faeces)

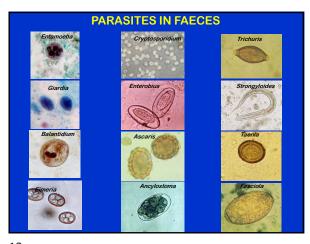
- Small intestine diarrhoea (non-inflammatory)
 - non-inflammatory)

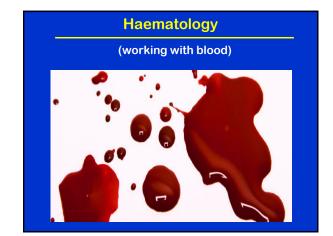
 leucocytes absent
 - mucus rare blood rare
- voluminous
- little painno fever

10

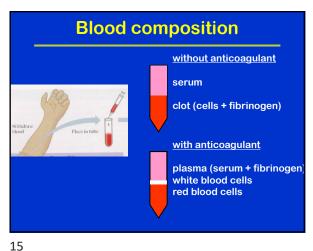

- viruses, Vibrio cholerae, E. coli (ETEC, EPEC), Staphylococcus, Bacillus, Clostridium perfringens, Giardia, Cryptosporidium, Isospora, Cyclospora
- Large intestine diarrhoea(inflammatory)
 - leucocytes present
 - mucus presentblood present
 - normal volume
 - normal volumesevere pain (LLQ)
 - fever may be present
- Shigella, Salmonella, Yersinia, Campylobacter, Clostridium difficile, E. coli (EHEC, EIEC), Aeromonas, Vibrio parahaemolyticus, Entamoeba

Diagnostic tests


macroscopic (characteristics)


9

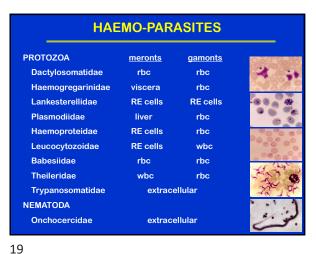
- microscopic (cysts, eggs, larvae)
 - permanent stained smears (fixed, stained)
 - trichrome, iron haematoxylin, acid-fast, ...
 - wet mount (saline, iodine, methylene blue)
 - concentration techniques
 - sedimentation (formalin-ether, iodine-trichrome)
 - floatation (saturated salt/sugar)(FEC)
- sticky tape test (pinworm)
- endoscopy/colonoscopy
- culture (filter paper, Baermann, ...)
- copro-antigen (DFA, EIA, dipstick)
- molecular biology (DNA extraction, PCR)



11 12

13 14

BLOOD CELLS circulating cells divided into: • leucocytes (white blood cells) - granular eosinophils basophils neutrophils - agranular lymphocytes monocytes

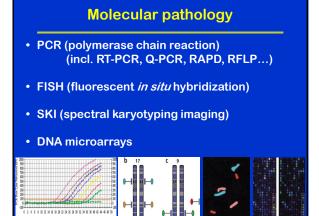

16

BLOOD EXAMINATION

- wet smear (motile mf, tryps)
- permanent stained blood films
 - thick/thin, Giemsa/haematology
- concentration procedures
 - microhaematocrit centrifugation (buffy coat)
 - Knott's concentration (lyse rbc)
 - membrane filtration (5 um Nucleopore)
 - gradient centrifugation (Hypaque, Ficoll)
- culture (in vitro, in vivo)
- immunoserology
 - · Ab (CFT, IHAT, IFAT, ELISA, RIA)
 - Ag (immunochromatography, EIA)
- molecular (DNA extraction, PCR amplification)

Most microscopic techniques rely on thin blood smear preparation aim for feathered monolayer

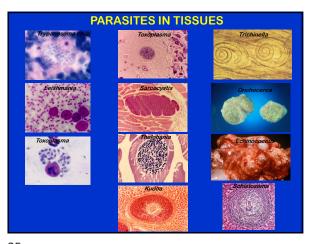
17 18


SEROLOGICAL TESTS

- precipitin tests
- immunodiffusion
- immunoelectrophoresis
- complement fixation
- · agglutination tests
- immunofluorescence
- enzyme immunoassays
- · radio immunoassays

22

20



Histology (working with tissues)

21

SAMPLES Ante-mortem (host alive) tissue biopsies skin scrapings aspirates • sputum • swabs Post-mortem (host dead/euthanized) any tissue/organ/fluid worm counts (GIN) gut digest (immature/hypobiotic) lung/perfusion (lungworms) brain smears (piroplasms)....

PROCEDURES • gross pathology (macroscopic) • <u>histo</u>pathology (microscopic) • frozen/fixed sections histochemical staining • immuno-labelling concentration luminal content (counts, ...) • tissue digest (larvae, arthropods) • culture (in vitro, in vivo) molecular (extract DNA, PCR)

Clinical Review					
Site	Symptoms	Transmission	PROTOZOA	HELMINTHS	ARTHROPODS
Gut	diarrhoea, blockage, anaemia	faecal-oral	amoebae diplomonads coccidia ciliates	round-, pin-, whip-,thread-, hook-worms tapeworms enteric flukes	-
Blood	anaemia, fever, ischaemia	vector-borne	trypanosomes haemosporidia piroplasms	filiarial worms blood flukes	-
Tissues	lesions dysfunction inflammation	predator- prey	cyst-forming coccidia microspora	hydatids cysticerci liver flukes <i>Trichinella</i>	-
- skin	lesions	direct	-	-	flies fleas lice mites ticks

25 26

Ideal characteristics of diagnostic test

- safety consideration
- cost efficient
- time efficient
- long-lived reagents
- ease of performance
- reproducibility
- accuracy
- specificity
- sensitivity

Sensitivity

Definitions:

- 1. the state or quality of being sensitive
- 2. the smallest concentration of a substance that can be reliably measured by a given analytical method
- 3. the probability that a person having a disease will be correctly identified by a clinical test
- not how few parasites can be detected (ng/mL, parasitaemia...)
 - ⇒ limit of detection (LOD)
- diagnostic test sensitivity is a measure of inclusion (true positive rate)

27

Definitions:

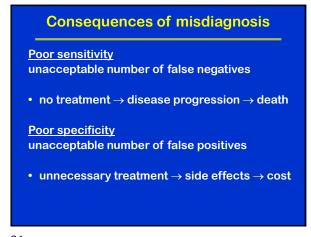
- 1. the quality or state of being specific
- 2. the probability that a person who does not have a disease will be correctly identified by a clinical test

Specificity

- · not how specific a test is for a parasite genus/species/strain/serotype/genotype ⇒ test cross-reactivity (presence/absence)
- · diagnostic test specificity is a measure of exclusion (true negative rate)

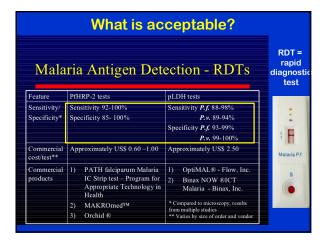
28

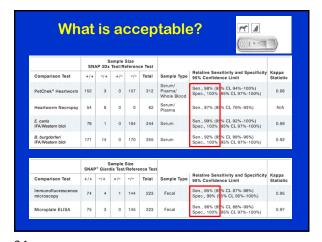
EFFICACY OF TEST INFECTION STATUS


infected not infected positive true + **TEST** negative

A+B false + С D C+D true -B+D

N


TEST ACCURACY (A+D) / N **TEST SENSITIVITY** A / (A+C) D / (B+D) **TEST SPECIFICITY** POSITIVE PREDICTIVE VALUE A / (A+B) **NEGATIVE PREDICTIVE VALUE** D / (C+D)


29 30

What is acceptable? Table 5. Trial I. comparison of prediction of parasitaemia by ICT, slide and reported symptoms in 334 patients, and axillary temperature in 244 patients with parasitaemia, using parasitaemia detected by ICT and/or slide as standard ICT = immuno-PPV^b (%) NPV^c (%) chromato-97.9 (94.5–99.3)^d – 74.9 (68.1–80.7) – graphic test) 73.9 (66.9-79.9) 52.7-66.9) 91.1–97.7) 16.5 (11.0–24.0) 61.6 (55.8–67.1) 71.9 (53.0–85.6) 95.4 80.3-90.5) 38.8 (30.8–47.5) 66.4 (60.2–72.1) 66.7 (55.2–76.5) Chills (C) 86.2 79.5 73.0-84.8) 17.3 (11.6-24.8) 57.4 (51.3-63.3) 37.5 (26.0-50.5) adache (H) 76.3-87.5) 47.5 39.0-56.1) 68.8 (62.4-74.6) 66.0 (55.8-75.0) 68.1-80.7) F + H 74.9 32.4 (24.8-40.9) 60.8 (54.3-67.0) 47.9 (37.6-58.4) 59.0-72.7) F + C + H 66.2 54.7 (46.0-63.1) 67.2 (60.0-73.7) 53.5 (45.0-61.9) 86.2-94.7) 25.2 (18.4-33.4) 63.1 (57.2-68.7) 67.3 (52.8-79.3) 58.4–75.5) 27.5–45.0) 45.8 36.8–55.1) 56.1 (47.7–64.1) 57.9 (47.3–67.8) 86.2 78.7–91.4) 71.0 (57.9–81.4) 58.6 (51.3–65.6) 67.5 Axilliary temperature ≥ 37.5 °C 35.8 Axilliary temperature ≥ 38.0 °C 23.6 16.6-32.2) 93.3 86.9-96.9) 78.4 (61.3-89.6) 54.4 (47.3-61.3) Recently treated patients excluded. PPV = positive predictive value. NPV = negative predictive value.

31 32

33