

1. Name 5 different modes of transmission for parasites.

• vector-borne
• faecal-oral
• predator-prey
• direct (venereal)
• transplacental
• transmammary

• vertical

2

4

1

PARA3002 TUTORIAL

2. Name 6 different groups of vectors

• diptera

• fleas

• lice

• bugs

• ticks

• mites

• copepods

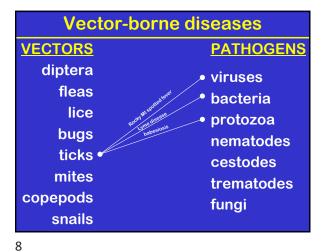
• crustacea

• snails

• gastropods

• molluscs

3

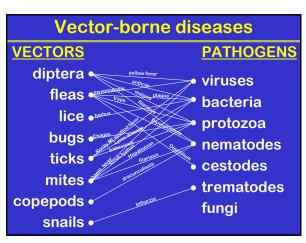

Vector-borne diseases VECTORS PATHOGENS diptera viruses fleas bacteria lice protozoa bugs nematodes ticks cestodes mites trematodes copepods fungi snails

Vector-borne diseases VECTORS PATHOGENS diptera viruses fleas • bacteria lice protozoa bugs nematodes ticks cestodes mites trematodes copepods fungi snails

Vector-borne diseases VECTORS PATHOGENS diptera viruses fleas bacteria lice o protozoa bugs nematodes ticks cestodes mites trematodes copepods fungi snails

5 6

Vector-borne diseases		
<u>VECTORS</u>	<u>PATHOGENS</u>	
diptera	viruses	
fleas	bacteria	
lice		
bugs • chag	nematodes	
ticks	cestodes trematodes	
mites		
copepods	fungi	
snails	· ····· · · · · · · · · · · · · · · ·	


7

Vector-borne diseases		
<u>VECTORS</u>	<u>PATHOGENS</u>	
diptera	viruses	
fleas	• bacteria	
lice	protozoa	
bugs	handles • nematodes	
ticks	cestodes	
mites 🖋	trematodes	
copepods	fungi	
snails		

Vector-borne diseases		
VECTORS	<u>PATHOGENS</u>	
diptera fleas	viruses bacteria protozoa • nematodes cestodes	
lice		
bugs		
ticks		
mites	trematodes	
copepods •	fungi	
snails	3	

9 10

Vector-borne diseases		
VECTORS	<u>PATHOGENS</u>	
diptera	viruses	
fleas	bacteria protozoa	
lice		
bugs	nematodes	
ticks	cestodes trematodes	
mites		
copepods	fungi	
snails •	ŭ	

11 12

PARA3002 TUTORIAL

- 3. What type of hosts are the vectors?
 - intermediate host (asexual dev) e.g. snail supports asexual dev of Schistosoma
 - definitive host (sexual dev) e.g. mosquito supports sexual dev of Plasmosium
 - paratenic host (no dev, carrier) e.g. fish carry dev stages of Clonorchis

13 14

focal

systemic

PARA3002 TUTORIAL

- 5. What effects do they have on hosts?
 - pain (annoyance, irritation, itching)
 - trauma (lesions, structural damage)
 - dermatosis (inflammation, ulceration)
 - allergy (hypersensitivity)
 - anaemia (blood loss)
 - toxicosis (poisoning, paralysis)

 - transmit infections (other pathogens)

15

PARA3002 TUTORIAL

7. Can we make hosts more resistant to vectors?

Yes! Selective breeding programs

- at least for animals (e.g. tick resistant Bos indicus cattle)
- determine heritability (make sure resistance is positively correlated

with good production parameters)

PARA3002 TUTORIAL

- 4. Can vectors be parasites in their own right?
- · YES!

(they need to feed on host to vector disease)

Except for snails (no vampire snails known)

PARA3002 TUTORIAL

6. How can we reduce vector contact?

Physical/mechanical separation

- barriers (screens, nets, clothing)
- avoidance (diurnal cycles, education)
- quarantine (diagnosis, isolation)
- habitat alteration (standing water, burning..)
- repellants (plants, chemicals)

16

PARA3002 TUTORIAL

8. Is vaccination an option?

Qualified yes!

- ? Anti-toxin immuno-therapy
 - (e.g. anti-holocyclotoxin in dogs)
- **☑ Vaccination** immuno-prophylaxis

(e.g. tick gut antigens)

PARA3002 TUTORIAL

9. How can we reduce vector populations?

Three basic strategies:

1. Kill them!

(chemical control) poisons (physical control) traps, removal.. (bio-control) predators/parasitoids/pathogens

2. Reduce habitat available

(drain swamps, clear land...)

3. Reduce reproduction

(sterile male release)
(Wohlbachia sterilization, feminization, killing)

19

PARA3002 TUTORIAL

In general, drugs target:

- DNA synthesis
- protein synthesis
- energy metabolism
- membrane function
- microtubule function
- neurotransmission

PARA3002 TUTORIAL

10. What are the targets of chemicals?

insecticides/acaricides target:

- neurotransmitters (Na channels, Cl channels, AchE)
- cuticle (growth regulators)
- ecdysis (juvenile hormones)

molluscicides (snail baits):

- metal salts
- metaldehydes
- AchE inhibitors

20

