

How are hosts protected?

- natural resistance
 - genetically determined
 - inherited (basis of breeding programs)
- acquired immunity
 - humoral responses (extracellular parasites)
 - cell-mediated responses (intracellular parasites)

review three lines of defense

11

How do parasites survive it all?

- Become less aggressive (parasite - commensal - symbiote)
- Learn to avoid host immune system (evasion mechanisms)
- Host-parasite evolutionary arms race (middle ground = enzootic stability)

activat

GM-CS

Others

IL-3 TNF-B

Others

IL-3 GM-CSF IL-10 TGF-β

IL-4 IL-5 CD40 ligi

Others

IFN-γ TNF-β

8

Perforin Granzymes Fas ligand

Evolutionary arms race

Host immune system works to:

- repel/destroy invaders
- undertake damage control
- protect against re-infection

Parasites develop survival strategies to avoid:

- innate immune responses
- acquired immune responses

13

Surface coat (glycocalyx)

 molecules anchored in plasma membrane by GPI (glycophosphatidylinositol) - precursor of all cell walls developed by animals/plants

Functions

- preservation of body shape
- mechanical/chemical barrier
- cell receptors (recognition/adhesion)
- biochemistry (enzymes, energy, transport)
- immune recognition (antigenic epitopes)

16

Functional level

Organismal - infectivity, survival Cellular - reproductive, nutritional Organellar - motility, energy transduction Molecular - recognition, signalling

Operational via:

- parasite surface coat
- parasite secretions
- parasite excretions

14

17

Parasite surface coat

- plasma membrane asymmetrical (polypeptides on inner and outer layers clearly different)
- external surface contains glycolipids, glycoproteins (rich in carbohydrate)
- other molecules may be adsorbed, esp. proteoglycans (acid mucopolysaccharides)
- surface coat may be delicate or evident as thick mat (up to 10% cell protein)

Strategies to avoid INNATE responses

- kill phagocytes using toxins (common for bacteria, suspected for some parasites)
- best to avoid phagocytic lysis altogether
 - (common for protozoa)
 - develop in cytoplasm
 - parasitophorous vacuole
 - produce inhibitory proteins
 - produce anti-oxidants

19

20

Anti-oxidants

• parasites resist killing by ROI and/or RNI (reactive oxygen/nitrogen intermediates) using anti-oxidants e.g. *Leishmania, Plasmodium*

23

Inhibitory proteins

• fusion of phagosome and lysosome inhibited e.g. *Toxoplasma gondii* tachyzoites

Strategies to avoid ACQUIRED responses		
HIDE	- conceal antigens	
CHANGE	- antigen variation	
SUBVERT	- immunosuppress	
25		

HIDE 3: inert sites Infect host tissues where lymphocyte populations are absent or reduced • gastro-intestinal lumen e.g. Giardia • central nervous system e.g. Naegleria • joints e.g. Onchocerca • embryo e.g. Toxoplasma • intragenomic e.g. Karyolysus • intracystic e.g. hydatid cysts • encapsulation e.g. Trichinella

• granuloma e.g. Schistosoma

28

26

CHANGE 2: recombination

genetic shift

(well known for human/avian influenza virus)

implicated for exceptionally virulent strains

- *Toxoplasma* RH (lacking cysts)
- *Giardia* 'Polly' (zoonotic, petechia)

31

impaired function, impaired division, cell death

SUBVERT 2: produce exotoxins induce polyclonal activation (T cell mitogens) immunodiversion (saturate host with irrelevant antigens) (e.g. many worms) produce proteolytic enzymes (cleave Ig)

34

SUBVERT 3: immunosuppress host

- induction of suppressor cells
- proteinase destruction of host effector molecules
- inhibit host proteinases/cytokines
- malaria immunosuppression linked to downregulation of cytotoxic T cells

Immuno-evasion

HIDE - CHANGE - SUBVERT

These strategies improve parasite survival (colonization, development, reproduction)

but still allows host immune system to limit disease and provide some protection

Remember: overt virulence resulting in host mortality is not in best interest of most parasites - better to be sneaky!

37

38

39

Protection against disease (if not infection)

ACTIVE IMMUNITY

- natural infection (subclinical)
- vaccination (stimulate immunity)

PASSIVE IMMUNITY (antibody transfer)

- natural (transplacental, colostral)
- artificial (immuno-prophylaxis/therapy HIBC)

+D

How do hosts survive it all?

- · Become resistant or tolerant (survival of fittest - Red Queen hypothesis)
- Ameliorate disease (minimize acute-chronic damage)
- Develop protective immunity (memory, premunition)

46

Objectives

Resultant immunity acts to:

- prevent infection (block transmission)
- prevent disease (limit pathogenicity)
- eradicate infection (affect cure)

Various success stories

- most against bacterial or viral diseases
- few against parasites (yet!)

44

47

History

 ancient Middle Eastern practice of "leishmanization"

deliberately infect children at inconspicuous site (buttocks)

with *L. tropica* from mild cases resulting in self-healing lesion (Oriental sore)

50

Best vaccines

- native/natural antigens
- contain multiple epitopes
- contain both T and B cell epitopes
- contribute to cooperative cell-mediated and humoral immunity (MHC class II needed for T cell responses)

- prevent disease (limit pathogenicity)
- eradicate infection (affect cure)

Various success stories

- most against bacterial or viral diseases
- few against parasites (yet!)

Subcellular vaccines

- surface coats
- membrane determinants
- cytosol fractions
- organelle extracts
- cytoskeletal elements
- secretory/excretory metabolic products
- inactivated toxins (toxoids)
- anti-idiotype vaccines (surrogate antigens)

58

K Live attenuated vaccines

Selection of induced mutants (genetic roulette)

- avirulent species/strains/clones
- precocious strains
- serial passage in animal models
- serial passage in tissue culture
- adaptation to low temperature
- chemical mutagenesis
- irradiation

56

Killed vaccines

Inactivated through:

- chemical treatment
 - formaldehyde
 - phenol/acetone
 - $-\beta propiolactone/ethylenimines/psoralens$
- heat/cold

2F

- irradiation
 - microwave
 - ultra-violet

59

Recombinant vaccines

Expression vector used for bulk production but recombinant antigen often less immunogenic

- lacking glycosylation sites
- inappropriate presentation
- loss of epitopes during expression
- often stimulate B cell responses (not T cell)
- best presented as MAP (multiple antigenic peptides) - structure with branching lysine core large enough to eliminate need for carrier

DNA vaccines

cloned genes via microbial vectors (virus/bacteria) immunize with plasmid DNA encoding antigens use plasmids with promoters for high expression

expression library immunization (single antigens often ineffective) application

- injected (i/m, s/c)
- needle-free (Biojector using CO₂)
- particle bombardment (gene gun)

61

Delivery systems

- liposomes (phospholipid vesicles)
- proteosomes
- iscoms (immune stimulating complexes)

 cage-like micelles of saponin derivative QuilA, cholesterol, phospholipids and antigen
- block polymers
 - polyoxyethylene
 - polyoxypropylene
- slow release formulations (bolus)

64

Vaccine optimization

Small antigens cleared rapidly from host

Need to prolong exposure to achieve response

- use carrier molecules
- use adjuvants
- use delivery systems
- use slow release depots

62

Adjuvants

Immunostimulants (additive/synergistic)

- inorganic salts (floccs)
 - aluminium hydroxide, beryllium hydroxide
 - aluminium phosphate, calcium phosphate
- saponins
- bacterial products
 - BCG (bacille Calmette-Guerin) tubercle bacillus
 - Freunds complete (bovine tuberculosis)
 - MDP (muramyl dipeptide)
- natural mediators
 - IL-1, IL-2, IFN-γ

Vaccine failure

- incomplete immunity (partial protection, disease in immunocompromised)
- short-term immunity (loss of protection)
- inappropriate responses (polyclonal activation)
- exaggerated responses (immunopathology)
- no clinical immunity (host disease)
- complete failure (host death)

65

Vaccine pathology

• contamination

(esp. with viruses)

- allergy/hypersensitivity
 - (to egg proteins, horse serum)
- autoimmunity (arthritis)
- neurological side-effects (convulsions) (meningitis/encephalitis)

The great debate		
Chemotherapy versus	Vaccination	
 broad spectrum (targets whole groups) short-acting re-infection possible drug resistance drug residues environmental toxins 	 narrow activity (species specific) long-lasting re-infection prevented reversion of virulence hypersensitivity contamination 	

PROTOZOAL VACCINES

· urgent need due to failure of many drugs

inadequate effluent disposal, urbanization

- pernicious effect (over-stimulation/exhaustion)

- immuno-modulation (mitogens/superantigens)

- evasion (antigen variation/intracellular dev.)

• more infections due to factory farming,

• cause sudden onset, acute diseases

• masters at immuno-evasion

67

PROTOZOAL VACCINES need T and B cell activation <u>and</u> interaction

- need 1 and B cell activation and interact
- antibodies implicated in:
 - inhibition/neutralization
 - interaction with NK, mØ, granulocytes to induce:
 - ADCC (antibody-dependent cell cytotoxicity)
 - ADCI (antibody-dependent cell inhibition)
 - opsonization phagocytosis
- responses isotype specific and cytokine-dep.

70

Parasite Vaccines Malaria vaccines · protective immunity acquired naturally, but not life-long roundworms (nematodes) flatworms (cestodes/trematodes) three vaccination protozoa (flagellates/sporozoa) strategies adopted - prevent infection (sporozoite vaccines) • complex immune interactions – cure infections cf. viruses and bacteria (merozoite vaccines) poorly understood – block transmission ÷ 🕢 🚽 (gametocyte vaccines)

71

Sporozoite vaccines

- live attenuated (irradiated) sporozoites protective (but not heat-killed, formalin-inactivated or lysates)
- immunity involves antibodies, CD8 cells, IFN- γ + NO

CD8 secretes IFN-γ activates iNOS

- Partial success with:
 - Pf-CSP circumsporozoite protein
- plasmid DNA encoding Pf-CSP
- NYVAC-Pf7 vaccinia virus
- incorporating 7 Pf genes

Merozoite vaccines

- immunity induced by drug cure
- protection afforded by adoptive transfer of antibodies or CD4 cells (esp. αβ cells)
- involves cytokines, γδ cells (IEL), NO
- candidate vaccines
 - ABRA: acidic/basic residues antigen
 - Pf155/RESA: 155kDA Pf antigen
 - GLURP: glutamate-rich protein

73

Tick fever (*Babesia*) vaccines

- **Molecular vaccines**
- SBP1: spherical body protein
- RAP-1: rhoptry-associated protein
- MSA-1: 42kDa major surface antigen
- MSA-2: 44kDa major surface antigen
- all induce CD4 response, IFN-γ production and give partial protection

76

Gametocyte vaccines • immunity limits sexual development • but too late to prevent/cure damage best part of cocktail vaccine strategy little known few candidates

74

Other protozoal vaccines

sleeping sickness, ngana	
Chagas disease	
East Coast fever	
coccidiosis (esp. poultry)	
toxoplasmosis	
bovine abortion	
freshwater white spot	

77

Tick fever (Babesia) vaccines

- **QDPI** pioneers for live vaccines (mild)
- chilled/cryopreserved strains of *B. bovis*, *B. bigemina*
- pretreat with acaricides, inject vaccine s/c or i/m
- vaccine failure due to reversion, treat with imizol

1958 - bovine lungworm *Dictyocaulus viviparus*

- live larvae protective, crude extracts not
- attenuation by irradiation (400 Gy)
- not sterile immunity (95-98% effective)
- not lifelong (lasts one year)
- good weaner vaccine

79

82

Nematode vaccines

Experimental attenuation of infective larvae successful for various nematodes, but few commercial successes due to:

- poor efficacy
- high costs
- variable results
- weaner susceptibility

80

Targets

<u>Hidden antigens</u> (novel/concealed/covert) (not normally seen by host immune system)

• gut antigens

worms ingest antibodies against their own intestinal cells resulting in blockage/lysis

Haemonchus contortin

• tick gut antigens Boophilus microplus

83

Targets

Natural antigens (seen by host immune system)

- ES (excretory/secretory) antigens Haemonchus, Ostertagia, Trichostrongylus
- tropomyosin (worm muscle cells) Trichostrongylus, Onchocerca
- acetyl choline esterases (worm metabolites) Dictyocaulus, Trichostrongylus, Haemonchus
- MSP (major sperm protein) Ascaris

FLATWORM VACCINES

- trematode/cestode infections accumulate causing chronic diseases
- multi-stage life-cycle involves multi-targets so little protective immunity develops
- hosts frequently re-infected/super-infected
- drug action curative, transient
- vaccine prophylactic, long-lasting
- need not be sterile immunity to reduce morbidity and transmission

Targets

- Parasite antigens (cytoskeletal proteins)
- paramyosin: major component of thick filament in invertebrate muscles, 97kDa antigen from *Schistosoma* tegument was 30-80% protective

85

Targets

- Elements considered as candidate vaccines
- internal proteins
- cytoskeletal proteins
- parasite enzymes
- molecules similar to host proteins

88

Targets

Parasite antigens (enzymes)

- GST: glutathione-S-transferase involved in detoxification of xenobiotics, extracts from *Schistosoma/Fasciola* tegument were 70% protective
- TPI: triose phosphate isomerase involved in glycolysis, 28kDa from Schistosoma was 40% protective

86

Targets

Parasite antigens (similar to host proteins)

- S23: integral membrane protein 23kDa from *Schistosoma* was 40-60% protective
- FABP: fatty acid binding protein involved in intracellular transport in lipid/vitelline droplets in *Schistosoma*, *Fasciola* and *Echinococcus* were 30-80% protective

Targets

Parasite antigens (internal proteins)

- 45W: oncosphere 45kDa antigen of *Taenia* 94% protective
- EG95: oncosphere 95kDa antigen of *Echinococcus* promising

 hp200: 200 kDa haemoglobin-like protein of *Fasciola* - 40% protective

89

Vaccination - summary

- live organisms
 - pathogenic (+ chemotherapy)
 - nonpathogenic
 - attenuated
- killed organisms
- subcellular vaccines
 - crude fractions
 - organelle/membrane determinants
 - secretory/excretory metabolic products
 recombinant antigens
 - DNA vaccines (immunogen expression)

Take home message

Prevention is better than cure!

91

Three phases of immunity

- host resistance/susceptibility
 - risk assessment
 - breeding for resistance
- modulation/eradication of active infection
 - affect cure (or symptomatic resolution)
- moderation of pathogenicity
- acquisition of protection
 - identify effector mechanisms

- generate life-long immunity

Control of parasitic disease

Treatment (intervention)

[demands knowledge of biochemistry/physiology]

- chemotherapy (treat parasites)
- supportive therapy (treat symptoms)

Prophylaxis (prevention)

[demands knowledge of biology/immunology]

- management (disrupt transmission)
- vaccination (induce protection)

92

Current problems

- Rapid emergence of drug resistance (variations on a theme)
- Complexity of immune interactions (humoral + cell-mediated responses)
- Few candidate vaccines
 - (many antigens few immunogens)
- Diminished immunocompetency
 - congenital immunodeficiencies
 - acquired immunodeficiencies
 - immunosuppressive chemotherapy

Protective immunity

Active (self-generated)

- natural infection (subclinical)
- vaccination (stimulate immunity)

Passive (inter-host transfer)

- natural (transplacental, colostral)
- artificial (cells/antibodies) immunotherapy

95

94

Immunotherapy

Endogenous

- constitutive (modulate existing function)
- restitutive (restore absent function)
- delimiting (splenectomy)

Exogenous

- immune cells (lymphophoresis)
- immunoglobulins (antibody transfer)
- soluble factors (cytokine therapy)
- immunostimulants

Immunobiology in action

Exemplar

Cryptosporidium parvum

- newly recognized enteropathogen
- · protozoan parasite similar to coccidia
- causes significant morbidity, some mortality
- anthroponotic, zoonotic, water-borne
- no effective chemotherapy

97

Host susceptibility/resistance

Age-related

- clinical infections most common in neonates
- rapid development of resistance in animals
- Acquisition of mature intestinal flora
- severe infections in germ-free/gnotobiotic animals
- Malnutrition
- · depleted iron status, low protein diet
- Immunological maturity
- immature senescent

100

98

Pathogenesis

- villus atrophy
- microvillus destruction
- impaired glucose and electrolyte transport
- · impaired carbohydrate and protein digestion
- malabsorptive and maldigestive disease
- pernicious cycle (cyclic merogony)
- auto-infection (chronic infections)

Humoral immunity

- Serum antibodies (acute-convalescent)
- serological tests (IFAT, ELISA)
- transient IgM, IgA, IgE (weeks)
- prolonged IgG (months)
- Copro-antibodies (patent infections)
- local/secretory IgA, IgM, IgG 5-16 dpi
- B cell deficiencies
- hypo-, a-gammaglobulinaemia
- selective immunodeficiencies
- Antibodies alone not protective (strong responses in AIDS patients with chronic infections)

101

Cell-mediated immunity

inflammation/infiltration

neutrophils, macrophages, lymphocytes, plasma cells

T-cell deficiencies

- low CD4 (helper)/AIDS patients chronic infections
- CD4 depletion in animals chronic infections
- CD4 restitution limits <u>duration</u> of infection
- CD8 (cytotoxic) modulation no effect
- NK (natural killer) cell modulation no effect
- SCID mice, nude mice/rats chronic infections

Cytokines

- IFNγ (interferon-gamma)
- selective depletion by neutralizing mAb's leads to severe infections
- · restoration moderates infection severity
- deficient C57/BL6 mice develop non-resolving fatal infections compared to asymptomatic selflimiting infections in normal wild type
- PBMC (peripheral blood mononuclear cells) produce IFNγ in immunocompetent patients but not in AIDS patients

106

103

104

Cytokine immunotherapy

Improve Th1 cytokine levels

- IFNγ: therapeutic application truncated infection (but oocyst shedding recommenced after treatment)
- IL-2: little effect

Improve macrophage activation

• IL-12: better antigen presentation

BUT, adverse effects unknown Therapy cost-prohibitive

107

Lactogenic immunity

Observations from surveys of neonates

- fewer infections in breast-fed children than in bottle-fed children
- more severe infections in colostrumdeprived calves, lambs

Passive transfer studies

- colostrum neutralizes sporozoites
- colostrum protects against severe disease
- · colostrum helps resolve symptoms

Colostrum

- maternal milk produced post-partum
- nutritionally-rich (protein/fat)
- immunologically-rich (antibodies)
- plentiful source (dairy industry)

Source

- uninfected cows low titre (1:100)
- infected cows medium titre (1:1000)
- devise immunization schedule to improve titre

109

Activity

- Prophylaxis (administered before infection)
- partial protection in animals
- reduce severity of infection
- Therapy (administered after infection)
- patent period reduced
- oocyst production reduced
- clinical resolution/ symptomatic improvement
 Undergoing clinical trials (FDA, TGA)
 Problem with lactose intolerance

112

110

Characterization

Antibodies

- titres up to 1:400,000
- isotypes IgG₁, IgG₂, IgM, IgA
- reactivity against antigens from:
 - sporozoites
 - merozoites
 - gametocytes
- intracellular activity?

HIBC immunotherapy

- similar strategy used for other enteropathogens e.g. rotavirus
- protective activity of colostrum well known in animal industries/veterinary science as prophylaxis against neonatal diarrhoea esp. in piggeries
- Alternative strategies
- mouse monoclonal antibodies
- hyperimmune egg yolks

