

1

MetabolismAnimal metabolism involves:• catabolize organic substances
to derive chemical energy• assemble low MW precursors
into polymeric components• form and degrade biomolecules
for specialized functionsanabolism= synthesis(requires E)
catabolism= breakdown(produces E)

catabolism = breakdown (produces E) both require enzyme co-factors (metal ions & NAD, nicotinamide adenine dinucleotide)

4

Biochemistry

Host biochemistry

- monitoring electrolytes (homeostasis)
- performing organ function tests

Parasite biochemistry

- determining pathogenic mechanisms
- prelude to drug development

Both require understanding of metabolism

2

Chemicals of life

Living organisms consist of:

- water
- proteins
- (synthesized from amino acids)
- lipids
 - (synthesized from fatty acids)
- carbohydrates/polysaccharides (synthesized from simple sugars)
- nucleic acids (synthesized from purine/pyrimidine nucleotides)

CARBOHYDRATES

Blood glucose

- ingested foods digested by enzymes
- taken up by small intestine
- stored in liver as glycogen
- metabolism under hormonal control (insulin)
- major disorder
 - diabetes (hyper/hypo-glycaemia)

5

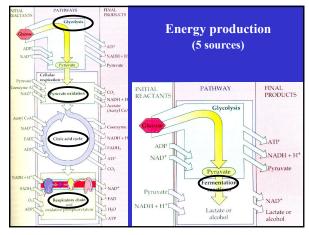
6

LIPIDS

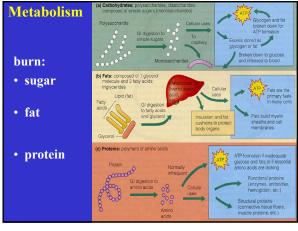
Comprise:

- long-chain fatty acids (stored as triglycerides - lipoproteins)
- phospholipids (constituents of membranes)
- cholesterol (precursor of steroid hormones, bile acids)
 - Polar "head"
- insoluble, rely on proteins for transport
 synthesized in most tissues (esp. liver)
- problems hyperlipidaemia (viscous plasma)

PROTEINS


Polymers composed of up to 20 amino acids

Classified according to structure:


- primary (amino acids)
- secondary (α-helix)
- tertiary (folding)
- quaternary (combination)

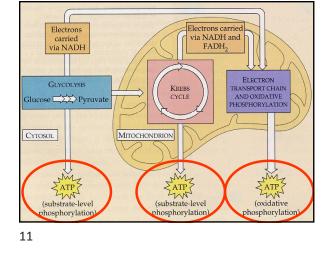
or classified according to chemical class

- simple (amino acids)
- conjugated (metalloproteins, nucleoproteins, lipoproteins, phosphoproteins, glycoproteins)

10

8

7


Cellular energy pathways

Five groups of energy-producing reactions

- 1. glycolysis
- 2. pyruvate oxidation
- 3. citric acid cycle
- 4. respiratory chain
- 5. fermentation

cellular respiration (require oxygen)

Metabolic pathways

Blood biochemistry can monitor:

- electrolytes (osmotic balance, pH)
- carbohydrates (energy supply)
- lipids (biosynthesis, stores)
- ketones (excretion)
- serum proteins (buffer, balance)
- enzymology (organ dysfunction)

Electrolytes

• important for osmotic balance, pH buffering, regulation of membrane permeability

cations

– sodium Na, potassium K

- calcium Ca, magnesium Mg
- anions
 - chloride Cl
 - bicarbonate HCO₃
- elements
 - phosphorus P, copper Cu, zinc Zn, iron Fe

13

Ketone bodies include:

- acetone
- acetoacetic acid
- excreted in body fluids
- metabolic products of breakdown of fatty acids

Ketones

- liver important organ
- increased levels indicate dysfunction

16

Carbohydrates

Blood glucose

- ingested foods digested by pancreatic enzymes
- taken up by small intestine
- stored in liver as glycogen
- metabolism under hormonal control (insulin)
- major disorder
 - diabetes (hyper/hypo-glycaemia)

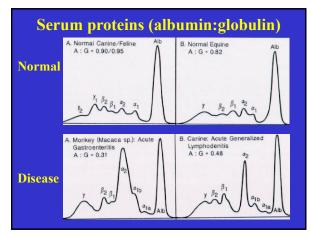
14

Lipids

Comprise:

- long-chain fatty acids (stored as triglycerides - lipoproteins)
- phospholipids (constituents of membranes)
- cholesterol (precursor of steroid hormones, bile acids)
- insoluble, rely on proteins for transport
- synthesized in most tissues (esp. liver)
- problems hyperlipidaemia (viscous plasma)

Serum proteins


Classified according to structure:

- primary (amino acids)
- secondary (α-helix)
- tertiary (folding) monomers
- quaternary (combination) dimers, etc

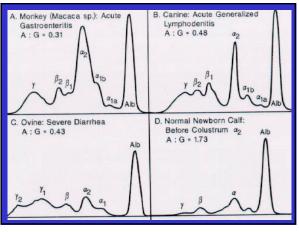
or classified according to chemical class

- simple (amino acids)
- conjugated (metalloproteins, nucleoproteins, lipoproteins, phosphoproteins, glycoproteins)

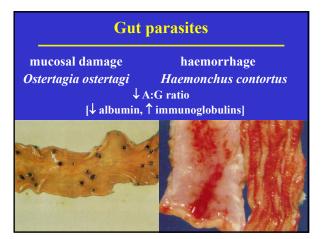
17

Dysproteinaemias

- Normal A:G ratio
- but both elevated = hyperproteinaemia → dehydration
 but both reduced = hypoproteinaemia → blood loss

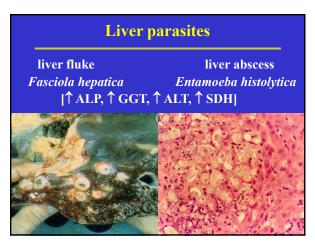

Decreased A:G ratio

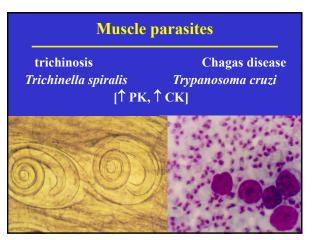
- decreased albumin → kidney/liver disease, parasites
 increased globulins
- $-\alpha$ -globulin \rightarrow inflammatory disease, nephritis
- $-\beta$ -globulin \rightarrow hepatitis, dermatitis
- $-\gamma$ -globulin \rightarrow infectious diseases, tumours


Increased A:G ratio

- increased albumin \rightarrow dehydration
- decreased globulin → immunodeficiencies

19


20



cironine

22

23

PARASITE METABOLISM

Parasites may utilize/usurp host metabolism They exhibit many specialized adaptations

- absence of circulatory system in helminths
- absence of digestive tract in cestodes
- absence of mitochondria in some protozoa
- alternation of metabolism between parasitic and free-living stages
- metabolic diapause

25

Pharmaceuticals

Pharmacodynamics - action of drug on body Pharmacokinetics - action of body on drug

Action based on selective toxicity (parasite first)

Contra-indicated use - side-effects - synergism/antagonism With-holding period - 100-1000x ADI (acceptable daily intake) Maximum residue limits

28

Metabolic variability

Parasites use rich supply of host nutrients

Many do not synthesize their own amino acids, nucleotides or lipids (many lack the genetic capability and use salvage pathways instead)

- Stage in nutrient-rich vertebrate host
- substrate level phosphorylation (anaerobic) <u>Stage in nutrient-poor invertebrate vector</u>
- oxidative phosphorylation (aerobic)
- Free-living stages
- use endogenous stores (aerobic)

26

Parasite targets

Huge diversity of parasites in terms of:

- organismal biodiversity (multiple phyla)
- developmental cycles (eggs/larvae/adults)
- food requirements (energy sources)
- metabolic pathways (aerobic/anaerobic)
- types of hosts (vertebrate/invertebrate)
- location within host (tissue/organ specificity)

All present challenges to chemical treatment

29

DRUG USE

Huge range of chemicals used for parasite:

chemotherapy (curative)

- static drugs (arrest development, reversible)
- cidial drugs (irreversible damage lethal)

chemoprophylaxis (preventive)

- stop infection
- limit infection

CHEMOTHERAPY

Drugs exhibit selective activity on:

- DNA synthesis (alkylation, purine, cofactor)
- protein synthesis (inhibition, translation)
- energy metabolism (electron transport, reduction)
- neurotransmission (blockers, inhibition)
- membrane function (vacuoles, permeability)
- microtubule function (paralysis)
- hem(oglobin) interaction (disruption)

DNA synthesis affecting drugs

- interference with dihydroorotate dehydrogenase hydroxyquinolines (decoquinate)
- alkyalation reactions nitroimidazoles (metronidazole)
- interference with purine salvage diloxanide (furamide)
- · interference with polyamine metabolism melarsoprol (melarsen)
- interference with cofactor synthesis - sulfonamides (sulfadoxine)
 - ⇒ STOP REPLICATION

31

Energy metabolism disturbing drugs

 \Rightarrow STARVE or

SUFFOCATE

PARASITES

- rotenoids
- iodoquinol (ioquin)
- suramin (germanin)
- antimonials (sodium stibogluconate)
- clopidol (clopindol)
- robenidine (robenz)
- amprolium (amprol)
- arsenicals (carbasone) clorsulan (curatrem)
- isothiocyanates (bitoscanate)
- halogenated monophenols (disophenol)
- halogenated bisphenols (bithionol)
- salicylanilides (niclosamide) cyamine dyes (pyrvinium)

34

Protein synthesis-affecting drugs

- emetine (mebadin)
- tetracyclines (oxytetracycline)
- lincosamides (clindamycin)
- macrolide antibiotics (erythromycin)
- aminoglycoside antibiotics (paromomycin)
- glutarimide antibiotics (axenomycin)
- glycopeptide antibiotics (streptothricin)
- diamphenethide (coriban)
 - ⇒ DENY BUILDING BLOCKS

32

Haem(oglobin) interaction

- artemisinin (artemether)
- amodiaquine (amodiaquine)
- halofantrine (halofantrine)
- chloroquin (chlorochin)
- quinine (various)
- mefloquine (laricur)

⇒ STARVE PARASITES

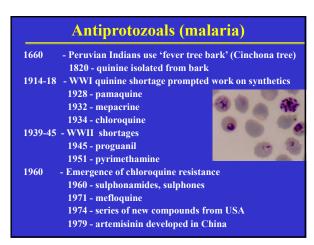
35

Membrane function disturbing drugs

- amphotericin B (amphozone)
- polyether antibiotics (monensin)
- mepacrine (atabrine)
- bunamidine (buban)
- praziquantel (droncit)
- diethylcarbamacine (carbam)

⇒ DISRUPT MEMBRANE **INTEGRITY/FUNCTION**

Neurotransmission-affecting drugs

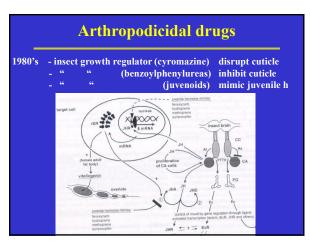

Blockers of cholinergic neurotransmission

- organophosphates (dichlorvos)
- ethanolamines (bephenium)
- pyrantel, morantel, oxantel, levamisole
- **Inhibitory drugs**
- piperazine (various)
- macrocyclic lactones (ivermectin)

\Rightarrow PARALYSE PARASITES

	Flagellates		Amoebae Ciliates	
	blood	enteric	enteric	enteric
1950's diloxanide			+	
chloroquine				
1960's iodoquinol				
metronidazole				
furazolidone				
1970's emetine			+ 💹	
erythromycin				
tetracyclines			20	1
benzimidazole	s		1	199

37


38

Anthelmintics

Arthropodicidal drugs				
1940's	- chlorinated hydrocarbon (DDT)sodium channel			
	- "" (cyclodiens, lindane)	chloride channel		
1950's	- organophosphates	AChE		
1960's	- carbamates	AChE		
1970's	- pyrethroids	sodium channel		
	- amidines	biogenic amines		
1980's	- avermectines/milbemycins	chloride channel		
1990's	- arylpyrazole (fipronil)	chloride channel		
	- chloronicotinyles (imidacloprid)nic	otinic AC res		
	AN AN			

40

41

PROBLEMS

Emergence of <u>drug resistance</u> due to:

- under-dosing (sublethal doses)
- poor compliance (treatment not completed)

Resistance found against:

- antimalarials (chloroquine)
- anticoccidials (ionophores, sulfonamides)
- anthelmintics (white/clear drenches)
- insecticides (DDT, organophosphates)

Need to understand mode of action of drug

DRUG LEVEL	TARGET LEVEL
 Exclusion decreased drug import increased drug export Sequestration drug-binding molecule drug compartmentalization Metabolism pro-drug not activated increased drug inactivation 	 Modified decreased affinity protected by substrate Amplified increased sequestration increased threshold Repaired reduced damage increased damage repaired

The great debate				
Chemotherapy versus	Vaccination			
 broad spectrum (targets whole groups) short-acting re-infection possible drug resistance drug residues environmental toxins 	 narrow activity (species specific) long-lasting re-infection prevented reversion of virulence hypersensitivity contamination 			