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POPULATION AND COMMUNITY STRUCTURE ANALYSES 
 
“The search for order in nature is a central theme in ecological research. In community ecology, this 
often amounts to a search for non-random patterns in the species composition of naturally-occurring 
assemblages, and for the ecological processes responsible for those patterns.” (Poulin, 2005).  
 
In parasitology, this equates to analyses of the prevalence, abundance and distribution of parasites 
within their hosts. Parasites are strictly dependent on their hosts for essential resources (food, shelter, 
transport, etc.); thus their geographical distribution, biodiversity and evolutionary history must, in 
some part, be influenced by that of their hosts. Host-parasite interactions may lead to the development 
of strict host-specificity and subsequently to tight host-parasite co-evolution. 
 
Definitions (infra-population, infra-community, component-community, compound community) 
Parasite population structure in single host species population 
Parasite population structure in multiple populations of same host species 
Parasite population structure in multiple populations of different host species 
 
Types of Analyses 
 
I. Status of distribution (core-satellite) 
II. Dominance (ranks) 
III. Relationships between prevalence and abundance 
IV. Dispersion (aggregation) 
V. Species-abundance distributions 
VI. Diversity 

A. Richness (number of species) 
B. Evenness (relative abundance) 
C. Taxonomic indices 

VII. Functional diversity 
VIII. Host specificity 

 Phylospecificity 
 Beta-specificity 
 Specificty matrix 
 Ecological niche 
 Host specificity 
 Host phylogenetic position 
 Inter-specific associations 
 Ecological fitting 

IX. Correlations 
X. Equilibrium or Non-equilibrium 
XI. Principal Components Analysis 
XII. Correspondence analyses 
XIII. Cluster Analysis 
XIV. Within-host parasite community interaction network 
XV. Statistical Tests 
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Requirements 
 
Want to analyse variations in parasite population and community structures within and between host 
species. Analyses pertinent to:  

 parasite biodiversity (species richness, relative abundance, species diversity) 
 host specificity (sympatry/allopatry/parapatry, physiology/diet, castes/social behaviours, nest 

types, phylogeny/co-evolution/host-switching) 
 biogeography (spatial and temporal distribution and abundance) 

 
Was there variation in the type and numbers of parasites: 

 within an individual host population (i.e. between hosts from one population) 
e.g. one termite colony, one geographic location 

 between populations of the same host species 
e.g. colonies of same termite species, different geographic locations 

 between populations of different host species 
e.g. colonies of different termite species, different geographic locations 

 
Have conducted studies to obtain measures of: 

 species identity (usually using morphotypic/biological diagnostic characters) 
 parasite occurrence (presence/absence) 

o calculate prevalence (= number infected/number hosts) 
 parasite numbers (count per host, concentration per unit volume or weight, often on log scale) 

o calculate mean abundance  
(= total number of parasites /total hosts (infected + uninfected)) 

o calculate relative abundance 
(ratio or percentage of each compared to total present) 

o calculate mean intensity 
(= total number of parasites/total number of infected hosts) 

 
Analyses within a single population 

 within individuals 
o infra-population (= all parasite individuals of same species within a host individual) 

 occurrence (presence/absence) 
 numbers (abundance, intensity) 

o infra-community (= all parasite individuals of all species within a host individual) 
 mean prevalence 
 mean abundance 
 mean intensity 

 between individuals 
o component-community (= all parasite individuals of all species within a host 

population) 
 traditional descriptors (species richness, mean intensity, mean abundance) 
 community similarity 

 
Analyses between different populations 

 between different populations of the same host species 
o guild (= all different parasite species within a particular host species that have a 

similar niche and that acquire resources in a similar way) 
 between populations of different host species 

o compound parasite communities (= array of parasite species inhabiting an array of 
host species in a given area) 
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DEFINITIONS 
 

Parasite distribution within a host population may be measured in terms of: 
 parasite prevalence (number or percentage infected hosts) 

[a, b and c given as presence/absence data] 
 parasite abundance (number of parasites per host] 

[a, b and c given as numeric values] 
 

HOST POPULATION A 
 (discrete habitat, largely independent dynamics)(e.g. termite colony, fish school) 
 
                                                         individual hosts 
                                         1                        2                       3 
 
                                   parasites            parasites             parasites 
                                    a        b              a      c                   b       c 
 
 
 
 

 PARASITE INFRA-POPULATION 
  (= all parasite individuals of same species within a host individual) 
  [e.g. 1a] 

 
 PARASITE INFRA-COMMUNITY 

  (= all parasite individuals of all species within a host individual) 
  [e.g. (1a+1b)] 

 
 PARASITE COMPONENT-COMMUNITY 

  (= all parasite individuals of all species within a host population) 
  [e.g. (1a+1b)+(2a+2c)+(3b+3c)] 

 
HOST POPULATION B 

 (discrete habitat, largely independent dynamics)(e.g. termite colony, fish school) 
 
                                                         individual hosts 
                                         1                        2                       3 
 
                                   parasites            parasites             parasites 
                                    a        b              a      c                   b       c 
 
 
 
 
 
METAPOPLULATION (INTER-POPULATION) ANALYSES 

(study of population of populations)[e.g. study of multiple termite colonies A, B...] 
 

 multiple populations of same host species 
 multiple populations of different host species (compound parasite communities) 

(array of parasite species inhabiting an array of host species in a given area) 
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PARASITE POPULATION STRUCTURE IN SINGLE HOST SPECIES POPULATION 
 
Let us consider a range of parasite species (a, b, c...)  
found in a number of individual hosts of the same species (1,2,3…) 
 
Their occurrence can be displayed in a host-parasite matrix: 

 either qualitatively as present (+) or absent (-);  
 or quantitatively as numbers per host (allowing mean intensity /abundance to be calculated) 

[log transformation of abundance data converts it into normally distributed (Goussian) data 
and reduces influence of dominant species (but not as much as conversion to 
presence/absence values)] 
[numbers ranked onto log scale where: 1 = rare (1-2/host); 2 = few (around 10/host);  
 3 = medium (around 100/host); 4 = numerous (around 1,000/host); 5 = prolific (around 
10,000/host), etc.] 

 
 Individual host number Sum  

1 2 3 4 4  
 
 
 

Parasite 
species 

a 4 4 3 0 3 prevalence = 3/4 
mean intensity = 11/3 
mean abundance = 11/4 

b 3 0 2 0 2 prevalence = 2/4 
mean intensity = 5/2) 
mean abundance = 5/4 

c 2 1 0 0 2 prevalence = 2/4 
mean intensity = 3/2 
mean abundance = 3/4 

d 0 0 0 2 1 prevalence = 1/4 
mean intensity = 2/1 
mean abundance = 2/4 

Sum 4 3 2 2 1   
  high 

species 
richness 

medium 
species 
richness 

medium 
species 
richness 

low 
species 
richness 

  

 
Infra-population (= all parasite individuals of same species within a host individual) 

[e.g. 1a] 
Infra-community (= all parasite individuals of all species within a host individual) 

[e.g. (1a+1b+1c+1d)] 
Component community (= all parasite individuals of all species within a host population)  

[e.g. (1a+1b+1c+1d)+(2a+2b+2c+2d)+(3a+3b+3c+3d)+(4a+4b+4c+4d)] 
 
This matrix depicts  

 parasite species richness for each host,  
 parasite prevalence (ubiquitous, prevalent, rare), 
 variation in numbers (light/heavy intensity, low/high abundance), and  
 type of distribution (uniform, random, aggregated, or patchy) 

 
It also indicates preliminary community structure: 

 all individuals have parasites, 
 ranging from 1-3 species,  
 most with 2 (not necessarily the same 2) 
 total of 4 parasites detected,  
 ranging in prevalence from 25-75% (a>b=c>d);  
 ranging in intensity from 1.5-3.6  (i.e. from ~50-600) (a>b>d>c),  
 ranging in abundance from 0.5-2.75 (i.e. from ~1-80) (a>b>c>d) 
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Assess status of distribution 
 
Assess dominance 
 
Assess distribution 
 
Is abundance of each parasite species normally distributed (or skewed)? 

 one sample t-test for normally distributed  
(test difference from mean) 

 Wilcoxon’s signed rank test for skewed distribution  
(test difference between medians) 

 
Compare distribution of pairs of parasite species (are they independent?) 

 two sample t-test for normally distributed  
(test equality of means) 

 Wilcoxon’s rank sum test (= Mann-Whitney U test) for skewed distribution  
(test equality of medians) 
 

Compare distribution of more than two parasite species (are they independent?) 
 analysis of variance for normally distributed  

(test equality of means) 
 Kruskal-Wallis test for skewed distribution  

(test equality of medians) 
 

 
Analyse data for correlations (Spearman’s correlation coefficient) (are they dependent?) 

 host castes 
 host sexes 
 host sizes 
 host ages 
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PARASITE POPULATION STRUCTURE IN MULTIPLE POPULATIONS OF SAME HOST 
SPECIES (HETEROGENEITY) 
 
Now let us consider a range of parasite species (a, b, c...)  
found in different populations of the same host species,  
e.g. from several locations or colonies (1,2,3…) 
 
Their occurrence can be displayed in a host-parasite matrix: 

 either qualitatively as present (+) or absent (-);  
 or quantitatively as mean numbers (intensity/abundance) per host 

 
 Different populations (colonies) Sum  

1 2 3 4 4  
 
 
 

Parasite 
species 

a 4 4 3 0 3 prevalence = 3/4 
mean intensity = 11/3 
mean abundance = 11/4 

b 3 0 2 0 2 prevalence = 2/4 
mean intensity = 5/2) 
mean abundance = 5/4 

c 2 1 0 0 2 prevalence = 2/4 
mean intensity = 3/2 
mean abundance = 3/4 

d 0 0 0 2 1 prevalence = 1/4 
mean intensity = 2/1 
mean abundance = 2/4 

Sum 4 3 2 2 1   
  high 

species 
richness 

medium 
species 
richness 

medium 
species 
richness 

low 
species 
richness 

  

 
This matrix depicts  

 parasite species richness for each population,  
 parasite prevalence for each population (ubiquitous, prevalent, rare), 
 variation in numbers between populations (light/heavy intensity, low/high abundance), and  
 type of distribution (uniform, random, aggregated, or patchy) 

 
It also indicates preliminary community structure: 

 all populations have parasites, 
 ranging from 1-3 species,  
 most with 2 (not necessarily the same 2) 
 total of 4 parasites detected,  
 ranging in prevalence from 25-75% (a>b=c>d);  
 ranging in intensity from 1.5-3.6  (i.e. from ~50-600) (a>b>d>c),  
 ranging in abundance from 0.5-2.75 (i.e. from ~1-80) (a>b>c>d) 

 
Confirm status of distribution (core-satellite hypothesis) 
are they similar? 
 
Confirm dominance: 
are they similar? 
 
Compare distributions 
can data be pooled? 
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PARASITE COMMUNITY STRUCTURE IN MULTIPLE POPULATIONS OF DIFFERENT 
HOST SPECIES 
 
COMPOUND PARASITE COMMUNITIES  
(= array of parasite species inhabiting an array of host species in a given area) 
 
Now let us consider a range of parasite species (a, b, c...)  
found in a range of host species (A, B, C...) 
 
Their occurrence can be displayed in a host-parasite matrix: 

 either qualitatively as present (+) or absent (-);  
 or quantitatively as mean numbers (intensity/abundance) per host 

 
 

 Host species Sum  
A B C D 4  

 
 
 
 
 

Parasite 
species 

a 4 
 

4 
 

3 
 

0 
 

3 
 

broad host specificity 
prevalence = 3/4 
mean intensity = 11/3 
mean abundance = 11/4 

b 3 
 

0 
 

2 
 

0 
 

2 medium host specificity 
prevalence = 2/4 
mean intensity = 5/2 
mean abundance = 5/4 

c 2 
 

1 
 

0 
 

0 
 

2 medium host specificity 
prevalence = 2/4 
mean intensity = 3/2 
mean abundance = 3/4 

d 0 
 

0 
 

0 
 

2 
 

1 narrow host specificity 
prevalence = 1/4 
mean intensity = 2/1 
mean abundance = 2/4 

Sum 4 3 2 2 1   
  high 

species 
diversity 

medium 
species 

diversity 

medium 
species 

diversity 

low 
species 

diversity 

  

 
This matrix depicts  

 parasite biodiversity (species richness, relative abundance) for each host species,  
- total of 4 parasites detected,  
- ranging in prevalence from 25-75% (a>b=c>d) 
- ranging in intensity from 1.5-3.6  (i.e. from ~50-600) (a>b>d>c) 
- ranging in abundance from 0.5-2.75 (i.e. from ~1-80) (a>b>c>d) 

 type of distribution (uniform, random, aggregated, or patchy) 
 all host species have parasites, 
 ranging from 1-3 species (host species specificity) 
 most with 2 (not necessarily the same 2) 

 
assess host specificity (are they similar?) 

 random distribution between hosts 
 associative distribution (pairs of parasites) 
 nested distribution (togetherness) 

 
assess community structure (do they cluster?) 

 evenness 
 clusters 
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ANALYSES 
 
 
 
I. Status of distribution (core-secondary-satellite hypothesis) 

 
 core (central) species = regionally common (> 66% prevalence), locally abundant, 

consistent occurrence 
 secondary species = regionally common (33-66% prevalence), moderately abundant 
 satellite species = regionally uncommon (<33% prevalence), locally rare, sporadic 

occurrence 
 
 
 
II. Dominance (ranks) 

 
 Which parasite species is most prevalent? 
  bar graph prevalence of each species, and combinations of species 
 Which parasite species is most abundant? 
  bar graph numeric values for each species, and combinations of species? 
 Which species is most frequent? 
  bar graph rank of each species as percentage of total number of parasites 

 
 
          dominance 
         (prevalence                  1234       1234      1234                          1234   1234    1234   1234 
       or abundance) 
 
 
 
                                                  a             b             c                               ab        bc        ac       abc 
 
 
          dominance                     d 
         (prevalence                     c 
       or abundance)                   b 
 
                                                 a 
 

 
The relative prevalence or abundance of each species can be expressed as a ratio (totalling 1) or 
as a percentage (totalling 100%) of the total found. These values can be statistically analysed by 
arcsine-transformation of the ratio data and then conducting a two-way multivariate analysis of 
variance (MANOVA). 
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III. Relationships between prevalence and abundance.  
 
The parasite distribution within a host population is generally measured by parasite abundance 
(number of parasite individuals per host) or prevalence (percentage of infected hosts). 
 

 Transforming data changes their properties to be more amenable to statistical analyses. In 
geometric terms, it shifts the relative positions of points in multivariate space in order to reveal 
obscured patterns, impose a desired pattern, or hide an undesired pattern. In exploratory 
statistical analyses, revealing and obscuring patterns are opposite sides of the same coin. Data 
transformations are generally necessary in order to obtain interpretable results, so knowing how 
they influence results is critical for interpreting and evaluating multivariate analyses. 

 
o Converting numerical abundances to presence/absence data. This transformation makes all 

species equally important in characterizing a sample, regardless of their abundance. 
If xai > 0, then x*ai  = 1, else x*ai  = 0 

  where xai  = abundance of species i in sample a 
 
 Logarithmic transformation. This transformation converts log-normal abundance data into 

normally distributed (Gaussian) data. It reduces the influence of dominant species, but not as 
much as conversion to presence/absence data. 

x*ai    = logb (xai  + k) 
where b = base of logarithm (typically 2, 10 or e) 
k = a constant (necessary to prevent undefined log values when xai  = 0 

The need for a constant is not a desirable property because it has a disproportionately large 
influence on the contribution of rare species (adding 1 to 1 is 100% change whereas adding 1 
to 10,000 is a 0.01% change). 
 
A log-based transformation that gets around the need to alter abundance values is: 

if  xai   = 0,  x*ai  =  0; else x*ai   = logb (x*ai) + 1 
This function has the advantage of rescaling that makes the classic log transformation so 
useful, but it maintains the correct relationship between xai values when they are subtracted 
from one another (as they are in most measures of similarity) regardless of their rarity. 

 
 Root transformation. Like all transformations, the root transform decreases the influence of 

dominant taxa. A ‘double square root’ (i.e. n=4) transform is quite common in ecology. 
x*ai  =  n√ (xai) 

An arcsine-squareroot transformation increases the importance of low abundance taxa and 
decreases the importance of high abundance taxa. Changes (xai)/(Σxai) values ranging from 0 
to (x*ai) values that range from 0 to 1.571 

x*ai  = arcsine√ [(xai)/(Σxai)] 
 

 Standardizing data. Standardization weights samples or taxa so that they contribute to a 
statistical analysis more equally; i.e. without standardizing data, large samples or abundant 
taxa can overwhelm a subtle pattern. 
 
o Standardization to total. When applied to a sample, each taxon is represented by its 

proportion and every sample sums to 1; i.e. what is referred to as relative abundance data 
(often multiplied by 100 to obtain percentages]. If applied to each taxon, it emphasizes rare 
taxa and diminishes common taxa. 

yai  =  (xai)/Σ(xai) 
 

o Standardization to maximum. When applied to a sample, the most common taxon is given 
a value of 1 and all the other taxa are scaled to it. The largest taxon in every collection is 
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then equal. If applied to each taxon, it equalizes the influence of rare and common taxa 
(maximum abundance of every taxon equals 1). 

yai  =  (xai)/max(xai) 
 

o Standardization to vector length. If a site is considered a vector (i.e. the point representing 
it in a space defined by species axes is the head of a vector starting at the origin), this 
standardization gives the vector a length of 1 (all sample points lie on a spheroid with 
radius equal to 1). 

yai  =  (xai)/√Σ(xai
2) 

 
o z-transformation. This transform is a common calculation in classical statistics (subtract 

the mean and divide by the standard deviation). 
zai  =  (xai – xa) / σa 

The result is that the mean value of every sample is 0 (it is centred) and the standard 
deviation of its taxon abundances is 1 (its unit length). This transformation is implicit when 
Principal Components Analysis (PCA) is applied to a correlation matrix. [Note the 
similarity in the form of the z-transform to the vector length equation – in effect, a z-
transform scales a centred data series to be a vector of length 1. 

 
o Two-way transformation. It is a common procedure to standardize both taxa and samples. 

A common approach is to standardize taxa to their minimum and samples to their totals. 
 

 Taylor’s power law is often found as the relationship between mean abundance (M) and its 
variance (V):         log(V) = b.log(M) + log(a) 

where  a = constant (intercept), 
 b = index of aggregation (slope) 

 
                               logV 
 
 
 
                                              logM 
 

From basic epidemiological models (Anderson & May, 1985), the prevalence of infection can 
be linked to the mean abundance of parasites at any time during infection dynamics according 
to: P = 1 – [1 + (M/k)]-k 

  where  P = prevalence; 
   k = aggregation parameter of the negative binomial distribution. 
The parameter k is related to the parameters a and b of Taylor’s power law by: 
  1/k = aM(b-2) – (1/M) 
Values for these parameters have been calculated for several parasite assemblages and they 
generally occur in the following ranges: b = 1.7 + 0.05; a = 0.6 + 0.05 

 
 Correlation between prevalence and abundance. A positive relationship is often observed 

between the prevalence and abundance of parasites, possibly as the result of epidemiological 
processes. 

 
                 prevalence 
 
 
 
                                                        log(abundance) 
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 Frequency distribution. The distribution of parasite prevalence shows a bimodal pattern for 
many parasites, possibly due to demographic explanations. Differences between observed and 
expected patterns can be tested using Monte-Carlo simulations in epidemiological models. 

 
 
                    number 
 
 
                                   0     20     40     60     80     100 
                                           % prevalence 
 

The core-satellite hypothesis was incorporated into meta-population dynamic models to explain 
the positive relationship between local abundance and prevalence of infection as it predicts a 
bimodal distribution of organisms in their environment (i.e. most species are present in either 
most patches or only in a small fraction of patches). The hypothesis is not based on competition 
but on the ability of species to recolonize empty patches after extinction (i.e. rescue efforts).  
Parasites very often show an overdispersed distribution described by a negative binomial 
distribution (i.e. most hosts have a few or no parasites, a few hosts have many parasites). 
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IV. Dispersion (aggregation measures) 
 

 Index of Dispersion (DI) (=VMR) (also known as coefficient of dispersion, relative variance, 
or variance-to-mean ratio (VMR)) is a normalized measure of the dispersion of a probability 
distribution (used in statistics and probability theory). Studies use the variance-to-mean ratio 
(statistical ‘D’) when data do not follow a theoretical Poisson distribution. DI is a measure used 
to quantify whether a set of observed occurrences are clustered or dispersed compared to a 
standard statistical model. Under a random distribution of points, DI is expected to equal 1. DI 
is calculated as the ratio of the variance (σ2) to the mean (μ), 
 

D = σ2  /  μ 
 
[aggregated when d>1.96; regular when d<-1.96; random when d<1.96] 
 
level of aggregation associated with: 

 heterogeneity of host behaviour 
 spatial aggregation of infective stages 
 variation in host susceptibility 

 
 Index of Cluster Size (ICS) (also known as the Index of Clumping (IC) is a direct function of 

the Index of Dispersion. Under a random distribution of points, ICS is expected to equal 0. 
Positive values indicate a clumped distribution; negative values a regular distribution. 

    ICS = (s2 / x) -1      {=  D – 1} 
 

 Green’s Dispersion Index (GI) is a modification of the Index of Cluster Size that is independent 
of n. It varies between 0 for random distributions and 1 for maximally clumped distributions. 

      GI = [(s2 / x) -1] / (n – 1)    { =  ICS / (n – 1)} 
 

 Index of Cluster Frequency (ICF) is a measure of aggregation and is equal to k of the negative 
binomial distribution. ICF is proportional to the quadrat area and is related to the Index of 
Cluster Size. 

ICF = [x / (s2 / x) -1]              {= x / ICS} 
 

 Index of Mean Crowding (IMC) is the average number of other points contained in the quadrat 
that contains a randomly chosen point. It is related to the Index of Cluster Size. 

IMC = x + (s2 / x) -1              {= x + ICS} 
 

 Index of Patchiness (IP) is related to the Index of Cluster Frequency and the Index of Mean 
Crowding, and is similar to Morisita’s Index. It is a measure of pattern intensity that is 
unaffected by thinning (the random removal of points).  

IP = [x + (s2 / x) -1] / x             {= IMC / x} {= 1 + (1 / ICF)} 
 

 Morisita’s Index (IM) is related to the Index of Patchiness. It is the scaled probability that two 
points chosen at random from the whole population are in the same quadrat. The higher the 
value, the more clumped the distribution [x = mean] 

IM =  [nΣx(x-1)] / [nx(nx-1)]              {= nxIP / (nx-1)} 

 
o Aggregation Model of Co-existence In metapopulation studies, it is important to examine the 

nature of the interactions between different species exploiting the same patchy resource. 
Communities are classified as non-interactive or interactive depending on whether interactions 
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are important or not among the residents of a local habitat. Interactive communities are of two 
types:  niche heterogeneity types (where co-existence is favoured when species differ in one or 
more important dimensions of their niche) or spatiotemporal heterogeneity types (where 
species differ in spatial or temporal occurrence). Species can co-exist by reducing the overall 
intensity of competition via aggregated utilization of fragmented resources, formalized as the 
‘aggregation model of co-existence’. This model postulates that co-existence is facilitated when 
the distribution of species leads to the reduction of interspecific aggregation relative to 
intraspecific aggregation. However, the model assumes saturation of ecological communities 
with species, which means that there is saturation of local species richness (in individual hosts) 
independent of the size of the regional pool of species (component parasite species). 
[Morand & Simkova, 2005: p.306 in Rohde (2005)] 

 
o Intraspecific aggregation (J) can be measured as the proportionate increase in the 

number of the same parasite species experienced by a random host relative to a random 
distribution: 

J = [Σ (n(n-1)/m) – m]/m       = [(V/m) – 1] / m 
   where  n = number in host of parasite species, 
    m = mean numbers, and  
    V = variance 

 
When J = 0, individuals are randomly distributed; J = 0.5, indicates a 50% increase in 
the number of parasite individuals expected in a given host compared to the random 
distribution. 

                                                                random 
 

frequency                            aggregated distribution 
 
 
 
 

  -2   0   2   4  6  8  10  12            mean J 
 

o Interspecific aggregation (C) can be measured as the proportionate increase in the 
number of different parasite species relative to a random association. 

C = = [Σ (n1.n2)/(m1.P] / m2      = Cov1,2 / (m1.m2) 
where  n1 and n2 = number of species 1 and species 2 in host; 

m1 and m2 = mean numbers of species 1 and species 2 per host; 
P = number of hosts; and 
Cov1,2  = covariance between a pair of parasite species 

 
The two parasite species are positively associated when C > 0, and negatively 

associated when C < 0 
                                                                      random 

 
frequency                            positive association 

 
 
 
 

        -1   0   1   2  3  4                  mean C 
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o Comparative index (A) quantifies the reduction in competition caused by intraspecific 
aggregation; i.e. the relative strength of intraspecific aggregation versus interspecific 
aggregation. 

A1,2 = [(J1 +1)(J2 +1)] / (C1,2 +1)2 
  When A > 1, intraspecific aggregation is stronger than interspecific aggregation. 

 
                       interspecific                     intraspecific 
                       aggregation                      aggregation 

frequency       predominates                   predominates 
 
 
 
 

-10   -8   -6   -4   -2   0   2   4      ln(mean A) 
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V. Species-abundance distributions 
 

Nearly all diversity and evenness indices are based on the relative abundance of species, thus 
on estimates of pi in which: 
  pi = Ni / N 

where Ni = the abundance of the i-th species in the sample and 
 N = ΣS

i=1 Ni  
where S = the total number of species in the sample. 
 

If one records the abundance of different species in a sample, it is invariably found that some 
species are rare, whereas others are more abundant. This feature of ecological communities is 
found independent of the taxonomic group or the area investigated. An important goal of ecology 
is to describe these consistent patterns in different communities, and explain them in terms of 
interactions with the biotic and abiotic environment. A community can be defined as the total set 
of organisms in an ecological unit (biotope), but the definition should always be qualified by 
stating limits or boundaries: e.g. 

 spatial boundaries of area or volume 
 sensitivity/specificity/limits of detection of sampling methods 
 time limits spanning observations 
 set of species (taxocene) treated as constituting/representing the community 

 
Species-abundance distribution data may be presented in different ways. 

 
o The rank/abundance plot (ranked species abundance curve) is one of the best known 

and most informative method. Species are ranked in sequence from most to least 
abundant along the horizontal (x) axis. Abundances are displayed on the vertical (y) 
axis, either as numeric values, but more typically subject to logarithmic (log10 or ln) 
transformation so that species whose abundances span several orders of magnitude can 
be accommodated on the same graph. Proportional or percentage abundances are often 
used. 

 
o The k-dominance plot shows the cumulative percentage (the percentage of the k-th most 

dominant plus all more dominant species) in relation to species (k) rank or log species 
(k) rank. 
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o The Lorenzen curve is based on the k-dominance plot but the species rank k is 
transformed to (k/S) x 100 to facilitate comparison between communities with 
different numbers of species. 

 
o The collector’s curve addresses a different problem. When one increases the sampling 

effort, and thus the number of the animals N caught, new species will appear in the 
collection. A collector’s curve expresses the number of species as a function of the 
number of specimens caught. As more specimens are caught, a collector’s curve can 
reach an asymptotic value but they often do not due to the vague boundaries of 
ecological communities: as sampling effort increases, also the number of different 
patches increases. 

 
o The species-abundance distribution plots the number of species that are represented by 

r = 0, 1, 2… individuals against the abundance r (e.g. 25 species with 1 individual, 20 
species with 2 individuals, etc.). This can only be drawn if the collection is large and 
contains many species. More often than not the species are grouped in logarithmic 
density classes (loge (= ln) favoured over log10 or log2). 

 
 Species-Abundance models. A diverse range of models has also been developed to describe 

species abundance data. Two kinds of models have been devised: historical ‘resource 
apportioning’ models, which make assumptions about the division of some limiting resource; 
and contemporary ‘statistical’ models, which make assumptions about probability distributions 
of the numbers in the several species within the community. 

 
o Niche preemption model (geometric series ranked abundance list). This resource 

apportioning model assumes that a species preempts a fraction k of a limiting resource, 
a second species the same fraction k of the remainder and so on. If the abundances are 
proportional to their share of the resource, the ranked abundances list is given by 
geometric series: 

k, k(1-k), …, k(1-k)(S-2), k(1-k)(S-1) 
where  S = the number of the species in the community. 
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The geometric model gives a straight line on a plot of log abundance against rank 
(species sequence). It is not very often found in nature, only in early successional stages 
or in species poor environments. 

 
o Negative exponential distribution (broken-stick model). This statistical model is given 

by the probability density function: ψ(y) = Se-Sy    This function can be arrived at via 
the ‘broken-stick’ model where a limiting resource is compared with a stick, broken in 
S parts at S-1 randomly located points. The length of the parts is taken as representative 
for the density of the S species subdividing the limiting resource. If the species are 
ranked according to abundance, the expected abundance of species i, Ni is given by: 

E(Ni)  = (1/S) ΣS
x=1 (1/x) 

The negative exponential distribution is not often found in nature. It describes a too 
even distribution of individuals over species to be a good representation of natural 
communities. 

 
o Log-series distribution (Fisher’s logarithmic series) describes the relationship between 

the number of species and the number of individuals in those species. The expected 
number of species with r individuals, Er, is given by: 

Er = α (Xr / r) 
r = 1, 2, 3…. 
α (>0) = parameter independent of sample size, for which X (0<X<1) is 
representative. The parameters α and X can be estimated by maximum 
likelihood but are conveniently estimated as soloutions of:  
S = -α ln(1.x)   and    
N = αX / (1-X) 
 

o Log-normal distribution may be expected when a large number of independent 
environmental factors act multiplicatively on the abundances of species. When 
species-abundance distribution is log-normal, the probability density function of y 
(the abundance of species) is given by: 

 ψ(y) = 1 / [y√(2πVz)]. exp [-(lny-µz)2 / 2Vz ]  
The mean and variance of y are: 
 µy  = exp [µz + (Vz/2)] 
 Vy = (expVz – 1). exp (2µz + Vz) 
 where µz and Vz are the mean and variance of z = lny 
In a limited sampling, a certain number of species will be unrepresented so the log-
normal distribution will be truncated (certain species are hidden behind a veil line). 
 

The four main species- abundance models 
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VI. Diversity.  
 
The diversity of species in a particular area depends not only on the number of species found, 
but also in their numbers. Diversity is a function of both the number of species in a community 
(species richness) and their relative abundances (species evenness). [A game reserve with one 
antelope and one zebra when compared with another with one antelope and ten zebra, therefore, 
have the same species richness but different species evenness.] Species diversity is a measure of 
community complexity. Larger numbers of species and more even abundances of species leads 
to higher species diversity.  
 
Numerous methods are available to compare communities, either based on univariate or 
multivariate indices. These indices are based on quantitative data (the percentage of each parasite 
species in the community). Using presence-absence data, rather than frequency data, corresponds 
to a loss of information but has the advantage of not conferring artificial weight on frequent 
species. Classification methods (such as the unweighted pair-group method of arithmetic 
averages (UPGMA) based on the Jaccard index) or correspondence analysis are tools commonly 
used to analyse such data. These phenetic analyses are based on the distance matrix and not 
directly on characters. Conversely, in phylogenetic methods, each character is polarised (in this 
case the species presence or absence of a species) and is used directly in the analysis. The indices 
measure diversity within a sample (alpha diversity), within a region (gamma diversity) or along 
a physical gradient (beta diversity); viz: 
 
 Alpha diversity refers to diversity within a uniform habitat (patch), and is usually measured 

by counting the number of species present 
 Beta diversity is species diversity between ecosystems; the rate and extent of change in 

species composition from one habitat to another. The analysis of beta-diversity, the extent 
of change in community structure among sites, has been shown to be a powerful tool in the 
analysis of biogeographical patterns. One of the most widely used analyses to evaluate 
beta-diversity is distance decay of similarity, which describes how similarity in community 
structure varies with increasing distance between localities (similarity decreases with 
increasing distance). 

 Gamma diversity is a measure of the overall diversity for all habitats within a geographical 
area. 

 
Diversity measurement is based on three assumptions: 
 
 All species are equal: this means that richness measurement makes no distinctions amongst 

species and threat the species that are exceptionally abundant in the same way as those that 
are extremely rare species. The relative abundance of species in an assemblage is the only 
factor that determines its importance in a diversity measure. 

 All individuals are equal: this means that there is no distinction between the largest and the 
smallest individual, in practice however the smallest animals can often escape for example 
by sampling with nets. Taxonomic and functional diversity measures, however, do not 
necessarily treat all species and individuals as equal. 

 Species abundance has been recorded in using appropriate and comparable units. It is 
clearly unwise to use different types of abundance measure, such as the number of 
individuals and the biomass, in the same investigation. Diversity estimates based on 
different units are not directly comparable. 

 
Measurements of biodiversity: A variety of objective measures have been created in order to 
empirically measure biodiversity. The basic idea of a diversity index is to obtain a quantitative 
estimate of biological variability that can be used to compare biological entities, composed of 
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direct components, in space or in time. It is important to distinguish ‘richness’ from ‘diversity’, 
as diversity usually implies a measure of both species number and ‘equitability’ (or ‘evenness’).  
 
There have been numerous attempts to create compound indices that combine measures of 
richness and abundance. Foremost among these are the Shannon’s diversity (H’) and Simpson’s 
diversity (D1) indices, which differ in their theoretical foundation and interpretation. H’ has its 
foundations in information theory and represents the uncertainty about the identity of an 
unknown individual. In a highly diverse (and evenly distributed) system, an unknown individual 
could belong to any species, leading to a high uncertainty in predictions of its identity. In a less 
diverse system dominated by one or a few species, it is easier to predict the identity of unknown 
individuals and there is less uncertainty in the system. This metric is common in the ecological 
literature, despite its abstract conceptualization. D1 is the complement of Simpson’s original 
index and represents the probability that two randomly chosen individuals belong to different 
species. D2 is closely related to D1, being the inverse of Simpson’s original index. Both of these 
transformations serve to make the index increase as diversity intuitively increases, and although 
both are used, D2 is more common. Finally, evenness represents the degree to which individuals 
are split among species with low values indicating that one or a few species dominate, and high 
values indicating that relatively equal numbers of individuals belong to each species. Evenness 
is not calculated independently, but rather is derived from compound diversity measures such as 
H’, D1, and D2, as they inherently contain richness and evenness components. However, 
evenness as calculated from H’ (J’) is of only limited use predictively because it mathematically 
correlates with H’. E, calculated from D2, is mathematically independent of D1 and therefore a 
more useful measure of evenness in many contexts. Strong correlations between diversity 
measures should not be surprising as they represent aspects of the same phenomenon. In fact, 
most of the measures analyzed can be derived from the same basic generalized entropy formula 

Na = (ΣS
i=1 Pa

i)1/(1-a) 
where Na is the effective species number,  

S is total species number,  
Pi

a is the proportional abundance of species i, and 
a is the power. 

H’ is equally sensitive to rare and abundant species; sensitivity to rare species increases as a 
decreases from 1, and sensitivity to abundant species increases as a increases from 1. Therefore, 
S is sensitive to rare species, D1 and D2 are sensitive to abundant species, and BP is sensitive to 
only the most abundant species. As all the Na’s have species as the unit, the range of values can 
be interpreted as a continuum from effective number of the most rare species to effective number 
of the most abundant species. Formulas to calculate diversity include richness (S), Shannon’s 
diversity (H’), Berger–Parker dominance (BP), Simpson’s diversity (D1), Simpson’s dominance 
(D2), and Simpson’s evenness (E). 
 

Metric Traditional formula Surrogate in Hill’s Series, 
Hill’s power 

Richness (S) Number of species S, 0 

Shannon’s diversity (H’) −∑Pi ln(Pi) exp(H’), 1 

Simpson’s diversity (D1) 1 − ∑  D2, 2 

Simpson’s dominance (D2) 1/∑  D2, 2 

Simpson’s evenness (E) D2/S – 

Berger–Parker dominance (BP) Pmax BP−1, ∞ 

pi  is the proportion of individuals belonging to species i 
pmax  is the proportion of individuals belonging to the most abundant species 
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Basically, three types of indices can be distinguished: species richness indices; evenness indices; 
and taxonomic indices. 
 
A. Species richness indices: Species richness is a measure for the total number of the species 

in a community. However, complete inventories of all species present at a certain location, 
is an almost unattainable goal in practical applications. 

 
A visualization of species richness with 5 and 10 species respectively. 

 
o Species richness 

 The simplest measure of biodiversity is a count (S) of the total number of 
different species present in a given area. It does not take into account the 
proportion and distribution of each species within the community. This measure 
is strongly dependent on sampling size and effort. Two species richness indices 
try to account for this problem: 

 
 Margalef’s diversity index: 

DMg  = (S-1) / ln N 
 

 Menhinick’s diversity index: 
DMn   =   S / √N 

where N = the total number of individuals in the sample, 
and    S = the number of species recorded. 
 

Despite the attempt to correct for sample size, both measures remain strongly 
influenced by sampling effort. Nonetheless they are intuitively meaningful indices 
and can play a useful role in investigations of biological diversity. 

 
 The Smith & van Belle equation can be used to estimate species richness by 

bootstrap methods B(S) using computer simulated subsampling of data,: 
B(S)  =  S  + Σ(1-pi)n 

where S = observed number of species 
 pi = proportion of the n bootstrap quadrats that have species I present. 
The simulation is repeated 100 times to get the mean estimate and its SD. 
 

o Existence of Association (binary coefficients of association) 
[not based on abundance data, but on presence/absence data] 

 
 Contingency Table of Co-occurrence 

 
  Sample B 
  1 0 
 

Sample A 
1 a (= no. taxa occurring 

in both samples) 
b (= no. taxa occurring in 

A but not B) 
0 c (= no. taxa occurring 

in B but not A) 
d (= no. taxa absent in 

both A and B) 
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 Simple Matching Coefficient 
SSM = (a+d)/ (a+b+c+d) 

Note that mutual absences contribute to similarity in this coefficient 
 

 Jaccard’s Coefficient (also known as Jaccard’s number, Jaccard’s index, 
similarity coefficient, species identity) compares members for two sets to see 
which members are shared and which are distinct. It is calculated as the number 
of mutual presences divided by the total number of taxa present in the two 
samples being compared. That is, the number in both sets / the number in either 
set.  

SJ = a / (a+b+c)   or in notation form:    J(X,Y) = |X∩Y| / |X∪Y| 
 

It is a measure of similarity for the two sets of data, with a range from 0 to 1 (or 
0-100%). The higher the number (or percentage), the more similar the two 
populations. Two sets that share all members would be 100% similar. The closer 
to 100%, the more similarity. If they share no members, they are 0% similar. 
The midway point (50%) means that the two sets share half of the members. 

 
A simple example using set notation:  
How similar are these two sets? A = {0,1,2,5,6}; B = {0,2,3,4,5,7,9} 
Solution: J(A,B)  = |A∩B| / |A∪B|  

= |{0,2,5}| / |{0,1,2,3,4,5,6,7,9}|  
= 3/9  
= 0.33 (x100 = 33%). 

 

 Sorensen’s Coefficient (also known as Sorensen-Dice index, F1 score or Dice 
Similarity Coefficient) is a statistic used for comparing the similarity of two 
samples. It is calculated as the number of mutual presences divided by average 
number of taxa in the two samples being compared.  

SS   = 2a / (2a+b+c) 
=  2SJ / (1+SJ) 

 
or alternatively: Sørensen's original formula was intended to be applied 

to presence/absence data, and is given as the |X| and |Y| are the numbers of 
elements in the two samples. ranges between 0 and 1 and provides a similarity 
measure over sets. It differs from Jaccard’s index which only counts true 
positives once in both the numerator and denominator. 
 

o Quantitative Coefficients of Association  
[incorporate abundance data] 

 
 Similarity Ratio 

SSR = Σ(xai xbi) / [Σx2
ai + Σx2

bi – Σ(xai xbi)]  
   If used with presence/absence data, this reverts to Jaccard’s coefficient. 
 

 Percentage Similarity 
SPS = 2Σmin(xai xbi) / [Σxai + Σxbi] 

   If used with presence/absence data, this reverts to Sorensen’s coefficient. 
 

 Percentage Difference. The complement of percentage similarity (Sorensen’s 
similarity index) is the percentage difference (called Bray-Curtis dissimilarity 
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or Lance-Williams metric). It quantifies the compositional dissimilarity 
between two different sites based on counts at each site. 

BC = Σ|xai - xbi| / [Σxai + Σxbi]       which also = [1 – SPS] 
 
An alternative notation is as follows: 
BCij = 1 – [2Cij / (Si + Sj)] 
where Cij = sum of the lesser values for only those species in common 
between both sites; 
Si and Sj = numbers of specimens counted at each site. 
This index reduces to 1 – 2C/2 = 1 – C where abundances at each site 
are expressed as a percentage. 
 

The BC index is regarded as very good in retaining underlying ecological 
patterns. Values range from 0 to 1, where 0 means that the two sites have the 
same composition (they share all the species) and 1 means that the two sites do 
not share any species. 
[Bray-Curtis and Jaccard indices are rank-order similar, but Jaccard’s index is 
metric and probably should be preferred instead of the default Bray-Curtis which 
is semi-metric]. 

 
B. Evenness/heterogeneity/equitability indices (relative abundance). The distribution of 

individuals over species is called evenness. It makes sense to consider species richness and 
species evenness as two independent characteristics of biological communities that together 
constitute its diversity. Evenness expresses how evenly the individuals in a community are 
distributed among the different species. 

 
A visualization of the evenness of 5 species. 

 
Species evenness refers to how close in numbers each species in an environment is. 
Mathematically it is defined as a diversity index, a measure of biodiversity which quantifies 
how equal the community is numerically. There are several measures of richness and 
evenness. The famous Simpson index is basically a measure of richness, whereas the 
Shannon index includes also a measure of evenness. Evenness refers to the similarity of 
frequencies of the different units making up a population (or sample). It is complementary 
to richness, which is the number of different units relative to population (or sample) size. 

 
An example is probably more telling than those definitions. Assume you get three population 
samples (each with N=10 individuals) from three different sites. Sample A contains 5 
individuals of genotype 1, 2 of genotype 2, 2 of genotype 3 and 1 of genotype 4. Sample B 
contains 5 individuals of genotype 1 and 5 of genotype 2. Sample C contains 3 individuals 
each of genotypes 1, 2 and 3, and 1 individual of genotype 4. 

 
 Sample A Sample B Sample C 
genotype 1 5 5 3 
genotype 2 2 5 3 
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genotype 3 2  3 
genotype 4 1  1 

 
Richness in these samples is 0.2 in sample B ( 2 genotypes out of 10 individuals), and 0.4 
(4 genotypes out of 10 individuals) in samples A and C. However, although their richness is 
the same, evenness in sample C is higher than in sample A, because genotype frequencies 
are more similar (or more 'even’); they range from 0.1 to 0.3 in sample C vs 0.1 to 0.5 in 
sample A. Therefore, overall, the population from which sample C comes is assumed to be 
more diverse than that from which sample A comes. 
 
Several equations have been proposed to calculate evenness from diversity measures: 
 
 Evenness index: The most frequent index used, which converges for large samples, is: 

E = [I – Imin] / [Imax – Imin]      and 
E = I / Imax 

where  I =  a diversity index, and  
Imin and Imax = the lowest and highest values of this index for the given number 
of species and the sample size. 

 
 Pielou’s evenness index (J) given by: 

J = H' /H’max = H' / logS  
 
The condition of independence of evenness measures from richness measures is not 
fulfilled for the most frequently used evenness indices. Such measures depend on a 
correct estimation of S*, the number of species in the community, which is nearly 
impossible to do. 
 
Substituting S, the number of species in the sample, makes the evenness index highly 
dependent on sample size. It also becomes very sensitive to the near random inclusion 
or exclusion of rare species in the sample.  
 

 Hill’s evenness ratios. Hill proposed to use ratios as evenness indices: 
Ea:b = Na / Nb 
where  Na and Nb = diversity numbers of order a and b respectively. 
 

[Note that H' – H’max = ln(N1/N0) belongs to this class, but J = H' /H’max does not].  
 
Hill showed that in an idealised community, where the hypothesised number of species 
is infinite and the sampling is perfectly random, E1:0 is always dependent on sample 
size. E2:1 stabilises, with increasing sample size, to a true community value. However, 
in practice all measures depend on sample size. 

E1:0  =  eH / S 
 

 Heip’s evenness index (Eh). Heip proposed to change the evenness index to 
E’1:0  =  (eH – 1) / (S – 1) 

 
In this way the index tends to 0 as the evenness decreases in species-poor communities. 
Due to a generally observed correlation between evenness and number of species in a 
sample, E1:0 tends to 1 as both eH → 1 and S → l. However this index falls into the same 
category as J, being dependent on an estimate of S. 

 
Heterogeneity measures are those that combine the richness and the evenness component of 
diversity. Heterogeneity measures fall into two categories: parametric indices, which are 
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based on a parameter of a species abundance model, and nonparametric indices, that make 
no assumptions about the underlying distributions of species abundances. 

 
o Parametric 

 
 log series index α is a parameter of the log series model. The parameter is 

independent of sample size and describes the way in which the individuals are 
divided among the species, which is a measure of diversity. The attractive properties 
of this diversity index are that it provides a good discrimination between sites, it is 
not very sensitive to density fluctuations and it is normally distributed, in this way 
confidence limits can be attached to α. 

 
The log series takes the form: 
  αx,  (αx2)/2,  (αx3)/3, …   (αxn)/n 

where αx = the number of species to have one individual,  
(αx2)/2 = number of species with two individuals, and so on.  

 
Since 0<x<1 and α and x are presumed to be constant, the expected number of 
species will be the highest in the first abundance class. 

x  is calculated interatively from  S/N = [(1-x)/x].ln [1/(1.x)] 
 and α from the equation:  α = [N(1-x)]/x 
 

o Non-parametric 
 

 Shannon’s Diversity index (H’) (also known as Shannon-Wiener, Shannon-
Weaver Diversity Index) is similar to Simpson's index, but takes into account 
species richness and proportion of each species within the community. The 
Shannon-Wiener diversity index is the most widely used diversity index in the 
ecological literature. It assumes that individuals are randomly sampled from an 
infinitely large community, and that all species are represented in the sample. 
The Shannon index is calculated from the equation: 

H = ∑s
i=1 - (Pi * ln Pi) 

where: 
H = the Shannon diversity index 
Pi = fraction of the entire population made up of species i 
S = numbers of species encountered 
∑ = sum from species 1 to species s 

Note:  The power to which the base e (e = 2.718281828.......) must be raised to 
obtain a number is called the natural logarithm (ln) of the number. 

 
To calculate the index: 
- Divide the number of individuals of species #1 you found in your sample 

by the total number of individuals of all species.  This is Pi 
- Multiply the fraction by its natural log (P1 * ln P1) 
- Repeat this for all of the different species that you have.  
- Sum all the - (Pi * ln Pi) products to get the value of H 

 
For example: 

Birds Ni Pi ln Pi - (Pi * ln Pi) 
Pigeon 96 .96 -.041 .039 
Robin 1 .01 -4.61 .046 
Starling 1 .01 -4.61 .046 
Crow 1 .01 -4.61 .046 
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Sparrow 1 .01 -4.61 .046 
          H = 0.223 

 
High values of H would be representative of more diverse communities.  A 
community with only one species would have an H value of 0 because Pi would 
equal 1 and be multiplied by ln Pi which would equal zero.  If the species are 
evenly distributed then the H value would be high.  So the H value allows us to 
know not only the number of species but how the abundance of the species is 
distributed among all the species in the community. 

 
 Brillouin index (H) is the appropriated form of the information index where 

randomness cannot be guaranteed, for example when certain species are 
preferentially sampled. It is calculated as follows: 

H = (1/N).ln[N!/(πNi)] 
    where πNi = N1.N2.N3….Ni 

Ni = number of individuals in species i and 
N = total number of individuals in the community. 

 
 Simpson’s index (γ) is one of the best known and earliest evenness measures, 

given by: 
γ = Σpi

2 
where pi = proportion of individuals found in the ith species. 

 
This index is used for large, sampled communities. Simpson’s index expresses 
the probability that any two individuals drawn at random from an infinitely large 
community belong to the same species. 
 
Alternative notation is as follows: 

D = [Σn(n-1)] / [N(N-1)] 
where D = Simpson’s diversity index 

N = total number of organisms of all species found 
n = number of individuals of a particular species 

 
D    stable or ancient site, D    recent colonization or perturbation 

 
Can also include Jacknife estimate to account for probability of missing some 
species during sampling) 

S = n + [(n-1)/n]k 
where  S = species richness 

n = total number of species in sample population 
K = number of unique species (of which only one organism 

 was found in sample) 
 

 Simpson’s diversity index (D1, D or SDI) is a measure of diversity which takes 
into account the number of species present, as well as the relative abundance of 
each species. The index assumes that the proportion of individuals in an area 
indicate their importance to diversity. As species richness and evenness increase, 
so diversity increase. SDI measures community diversity. The range is from 0 
to 1, where high scores (close to 1) indicate high diversity, and low scores (close 
to 0) indicate low diversity. 

   D = 1 - [Σn(n-1)] / [N(N-1)] 
where n = number of individuals of each species, 
and    N = total number of individuals of all species 
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EXAMPLE: What is Simpson’s Diversity Index for the following 5 species? 

Calculate answer: Sum the total number in the set (N=89) and calculate 
N (N – 1)  = 89 (81 -1) = 7832. 
Calculate n(n – 1) for each species: 

Calculate D = 1 – (6488 / 7832) = 0.17  
 

 Simpson’s dominance index (D2, or λ)  
λ = Σipi

2 
For large sampled communities, if two individuals are sampled at random and 
without replacement, this index expresses the probability that they belong to 
the same species. In small fully censused communities, Simpson’s diversity 
index is used. 

 
 Evenness indices. A whole series of evenness indices can be derived from 

Simpson's dominance index λ. Since the maximum value of λ is l/S (S = 
number of species), an evenness index can be written as: 

E = (1/λ)/S 
This corresponds to Hill’s E2:1  ratio 

E2:1  = (1/λ)/eH 
which was modified by Alatalo to 

E2:1  = [(1/λ)-1]/[eH -1] 
 

If the criterion of independence of measures for species richness and evenness is 
accepted, the choice of indices becomes restricted. It was suggested to use the 
variation in species abundance in indices. If one uses Hill's number H2 = 1/λ, a 
simple statistic is the weighted mean-square deviation from the proportional 
abundances that would be expected for H2 equally abundant species. A measure 
of evenness is then: 

DMS = [Σwi(pi-λ)2] / Σwi 
where  MS = mean square,  

λ = Simpson's index, and 
wi = pi 

 
Hill showed that the expected mean and variance of the relative abundance pi  
are given by: 

E(pi) = λ 
Var(pi)_ = DMS 
 

A measure of the shape of the species abundance relation is given by 
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D*MS = DMS / λ2 
and a measure of evenness by: 

EMS = 1(1 +D*MS) 
In general, species-abundance distributions show more information about the 
evenness than any single index. On the other hand, statistics describing these 
distributions can also be used as measures of evenness.  

 
 Simpson’s evenness (E) This index is defined as Simpson’s dominance index 

divided by the number of species: 
E = D2/S 

 
 Berger-Parker dominance (BP) This index is simply defined as the proportion 

of individuals belonging to the most abundant species: 
BP =  Pmax 

 
 Hill diversity numbers (H0, H1, H2) show the relation between the species-

richness indices and the evenness-indices. Hill defined a set of diversity number 
of different order. The diversity number of order a is defined as: 

Ha = [Σpi
a](1/(1-a)) 

where   = the proportional abundance of species i in the sample and 
              a = the order in which the index is dependent of rare species. 
For a = 0, H0 can be seen to equal S, the number of species in the sample. 
For a = 1, H1 is undefined by the equation, but defining H1 = lima→1(Ha) gives 
H1 = exp(H’) where H’ is the well-known Shannon-Weiner diversity index (the 
most widely used index in ecology). 
The next diversity number H2 is the reciprocal of Simpson’s dominance index 
λ for large sampled communities; i.e. H2 = 1/λ   
 
Hill’s diversity numbers of different orders probe different aspects of the 
community. The number of order +∞ only takes into account the commonest 
species. At the other extreme, H-∞ is the reciprocal of the proportional 
abundance of the rarest species, ignoring the more common ones. The numbers 
H0, H1, and H2 are in between in this spectrum. H2 gives more weight to the 
abundance of common species (and is, thus, less influenced by the addition or 
deletion of some rare species) than H1. This, in turn, gives less weight to the rare 
species than H0, which, in fact, weighs all species equally, independent of their 
abundance.  
It is good practice to give diversity numbers of different order when 
characterising a community. Moreover, these numbers are useful in calculating 
evenness. 

 
o Metrics based on geometry. Species abundances in a sample can be thought of a x, y, 

z, etc. coordinates of a point in a multidimensional space; the sample is depicted as a 
point and the distances between points are related to their similarity/differences. 
 
 Euclidean Distance. This metric is based on the Pythagorean Theorem. 

DAB = √Σ(xai – xbi)2 
 

DAB has several important properties: 
 DAB > 0 (positive) 

 DAB = DBA (symmetrical) 

 DAc < DAB + DBC (conforms to triangular inequality) 

 If A = B, DAB = 0; if A ≠  B, DAB > 0 
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The value of Euclidean distance is dependent on number of taxa, so one way of 
scaling it is to divide by the total number of taxa: 

DAB = √(1/p)Σ(xai – xbi)2 
 
Euclidean distance is one of a general set of distance metrics called Minkowski 
Metrics: 

D = z√(1/p)Σ(xai – xbi)z 
 
If z = 1, then the Manhattan or City Block distance metric is obtained: 

MCD = (1/p)Σ|xai – xbi| 
 
Overall, Euclidean distance (and more generally Minkowski family of distance 
metrics) is not good for analysing sparse data, which are typical of ecological data 
sets. However, this measure is fundamental to methods like Polar Ordination and 
Non-Metric Multidimensional Scaling (MDS) and sees wide application in 
geometric morphometrics. In addition, several coefficients (e.g. chord distance) 
that have proven to be very useful in ecology are closely related to Euclidean 
distance. 

 
 Cos-theta or Ochiai Coefficient. Rather than evaluate taxonomic difference using 

multivariate distance, we can examine the angle between two sample points in a 
multidimensional space: 

cosθAB = Σ(xai xbi) / √Σ(xai
2  xbi

2) 
when θ = 0, cosθ = 1; when θ = 90, cosθ = 0; when θ = 180, cosθ = -1 

If data are z-transformed, then this metric reverts to Pearson’s r (i.e. a geometric 
interpretation of r is as an angle between two vectors in ordination space). This metric 
has automatic vector length standardization. Like Euclidean distance, it is susceptible 
to sparse data. 

 
 Chord distance. This metric combines Euclidean distance and angles between 

points; it is equal to comparing samples standardized to unit vector length using 
Euclidean distance. 

CD = √ Σ {[xai / √Σ(xai
2)] - [xbi / √Σ(xbi

2)}2 
 

C. Taxonomic indices. These indices take into account the taxonomic relation between different 
organisms in a community. Taxonomic diversity, for example, reflects the average taxonomic 
distance between any two organisms, chosen at random from a sample. The distance can be seen 
as the length of the path connecting these two organisms along the branches of a phylogenetic 
tree. If two data-sets have identical numbers of species and equivalent patterns of species 
abundance, but differ in the diversity of taxa to which the species belong, it seems intuitively 
appropriate that the most taxonomically varied data-set is the more diverse. As long as the 
phylogeny of the data-set of interest is reasonably well resolved, measures of taxonomic diversity 
are possible. 

 
 Clarke and Warwick’s taxonomic distinctness index which describes the average taxonomic 

distance – simply the “path length” between two randomly chosen organisms through the 
phylogeny of all the species in a data-set – has different forms: taxonomic diversity and 
taxonomic distinctness. 

 
o Taxonomic diversity (Δ) reflects the average taxonomic distance between any two 

organisms, chosen at random from a sample. The distance can be seen as the length of 
the path connecting these two organisms through a phylogenetic tree or a Linnean 
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classification. This index includes aspects of taxonomic relatedness and evenness. It is 
calculated as: 

[ΣΣi<j ωij xixj] / [(N(N-1))/2] 
 

o Taxonomic distinctness (Δ*) is the average path length between two randomly chosen 
but taxonomically different organisms. This measure is measure of pure taxonomic 
relatedness. It is calculated as: 

[ΣΣi<j ωij xixj] / [ΣΣi<j xixj] 
 

o When only presence/absence data is considered both Δ and Δ* converge to the same 
statistic Δ+, which can be seen as the average taxonomic path length between any two 
randomly chosen species. It is calculated as: 

[ΣΣi<j ωij] / [(S(S-1))/2] 
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VII. Functional diversity. The positive relationship between ecosystem functioning and species 
richness is often attributed to the greater number of functional groups found in richer 
assemblages. Petchey and Gaston proposed a method for quantifying functional diversity. It is 
based on total branch length of a dendrogram, which is constructed from species trait values. 
One important consideration is that only those traits linked to the ecosystem process of interest 
are used. Thus a study focusing on bird-mediated seed dispersal would exclude traits such as 
plumage color that are not related to this function, but traits such as beak size and shape should 
be included With standard clustering algorithms a dendrogram is then constructed. The method 
makes sense. For example a community with five species with different traits will have a higher 
functional diversity than a community of equal richness but where the species are functional 
similar. 
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VIII. Host specificity 
 
A parasite that is specific for a single host species is said to be oioxenous, one that parasitizes closely-
related hosts is stenoxenous, while one that parasitizes unrelated hosts is euryxenous. Host-specificity 
is determined by a complex of factors, some obvious and others still obscure: 
 

 ecological specificity (prospective host shares its environment with the parasite) 
 ethological specificity (host behaviour must expose it to the parasite)  
 physiological specificity (recognize appropriate cues in permissive host) 

 
Need to define differences between host range, host specificity and host preference: 
 

 host range (= number of hosts that can be infected by a particular parasite species) 
 host specificity (usually same as host range, but there are deeper dimensions; e.g. 

o structural specificity (hosts exhibit different population structures) 
o phylospecificity (phylogenetic host specificity) (hosts closely-related or not) 
o geographic host specificity (β-specificity) (host populations structured differently) 

 host preference (preferred hosts with greater prevalence)(variations in dominance) 
 
Various techniques have been developed to illustrate similarities/differences in the hosts utilized by 
parasites: including tables (matrices), diagrams (dendrograms, tanglegrams), quantitative measures 
(maths models) and statistics (probability). 

 
Host specificity is inversely proportional to ‘generalism’ in host use, and it is the extent to which 
parasites are generalists that is measured by most indices. Low index values correspond to high host 
specificity, and vice versa. 

 
 Basic and structural host specificity. Traditionally, host specificity is simply estimated as the 

number of host species (S) used by a parasite species, but this value can also be corrected for 
biases arising from the under-sampling of rare hosts using Chao indices. When data on 
prevalence or abundance can be incorporated into the measurement of structural specificity, 
composite indices can be used, such as the Shannon index, or else a ‘pure’ evenness index, 
Σindependent from the number of host species, such as the Bulla index. 
 

 Phylogenetic host specificity (phylospecificity). Because host species are phylogenetically 
related, we can estimate the phylogenetic host specificity of a parasite, PSi, as the phylogenetic 
diversity of its hosts, which is equivalent to the measure PDi of the biodiversity literature. Here, 
PSi represents the total length of branches linking the host species of parasite i along the 
phylogenetic tree. Because PSi is not totally independent from the number of host species used 
by a parasite and thus provides information redundant with S, two options are possible. 

 
o Estimate the standardized effect size of PSi, or SPSi, using random subsets of potential 

host species drawn from the regional pool to determine whether the hosts actually 
used by the parasite are more or less closely related than expected by chance, and thus 
whether the phylospecificity of parasite i is high or low for a given value of S using: 

SPSi    =     (PSi – PSsim)  /  [SD (PSsim)] 
where PSi  =  observed phylospecificity of parasite i,  

PSsim = mean phylospecificity of all random host subsets, and  
SD(PSsim) = standard deviation of all randomized phylospecificity values. 
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o Estimate phylospecificity as the average phylogenetic distinctiveness, SPDi, between 
all pairs of host species, which is independent from how many host species are used 
by a parasite: 

SPDi  =   2 {ΣΣj<k ωjk  /  [S(S-1)]} 
  where ωjk = the phylogenetic distance between host species j and k used by parasite i, 

[or, when the phylogeny is not fully resolved, the number of taxonomic 
  steps required to reach a node common to both] 

The double summation is over the set {k = 1,... S; j = 1, . . . S, such that j< k} 
 in order to consider all host species pairs. 
 

 Geographic host specificity (β-specificity). Measuring the turnover of host species used by a 
parasite among different localities, in other words β-specificity or BSi, involves estimating the 
dissimilarity in host species identities between localities. Most dissimilarity or β-specificity 
indices have been designed for two samples only. Ideally, estimates of β-specificity across 
space should include several samples (i.e. data from different localities). We suggest using the 
extension of the Sørensen dissimilarity index for multiple-sites to measure β-specificity: 

BSi  =  {1 -  [T / (T – 1)].[1 – (ST / Σt St)]} 
where T = the number of samples or localities,  

St  = the number of host species used in locality t, and  
ST = the total number of host species used by parasite species i across 
          all T localities (i.e. the regional host pool). 

If parasite i exploits the same host species across all localities, then St = ST and BSi = 0. 
If parasite i uses totally different host species from one locality to the next, then ST = Σt St 
 and BSi = 1. 
 

 Combining phylogenetic and geographic specificity (phylobetaspecificity). Information about 
the phylogenetic relatedness of host species and their different use across localities can be 
combined into a single index of phylogenetic b-specificity, or PBSi. This corresponds to the 
phylogenetic turnover of host species used by parasite i over geographic space. For this, we 
can use an extension of the Sørensen index to branches instead of species following the 
principle underlying the construction of the Phylosor index: 

PBSi  =  {1 -  [T / (T – 1)].[1 – (PDT / Σt PDt)]} 
where T = the number of samples or localities,  

PDt = the phylogenetic diversity of host species used by the parasite 
 in locality t, and 

PDT = the phylogenetic diversity of all host species used by parasite  
species I across all T localities.  

If parasite i exploits the same host species over all localities, PDt = PDT and PBSi = 0.  
If parasite i uses different host species from one locality to the next, then the less 
phylogenetically related those hosts are, the higher the PBSi value. 
 
The Sørensen index is used as a common statistical index because it can cope with multiple 
localities and can incorporate phylogenetic diversity. If prevalences are known for each host 
species used by a parasite, an alternative framework could be developed to estimate specificity 
over geographic and phylogenetic space while also incorporating structural host specificity, 
based for instance on the Rao index or the Shannon entropy index 
 
Two R packages can be used to compute the above-named indices. 
First, the package ‘vegan’ allows one to estimate: 
o Basic host specificity, i.e. the number of host species used by a parasite in a locality, with 

the function specnumber. The function estimateR then allows a correction for biases 
arising from the undersampling of rare species that could escape detection as hosts. 
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o Structural host specificity, with a composite index such as Shannon or Simpson using the 
function diversity. 

o Phylogenetic distinctiveness among host species, or SPDi, with the function taxondive 
which requires the taxonomic (or the phylogenetic) distances between all host species 
pairs as an input file. 

Second, the package ‘picante’ allows one to estimate: 
o The phylogenetic diversity of the host species exploited by parasite i (PDi) using the 

function pd. The phylogenetic tree required as input needs to be ultrametric.  
o The standardized effect size of the phylogenetic diversity of hosts exploited by parasite i 

(SPSi) using the function ses.pd and shuffling taxa labels in the host phylogenetic tree. 
The phylogenetic tree also needs to be ultrametric.  

o The Rao index, through the function raoD, which allows inclusion of prevalence data to 
compute specificity indices over space and phylogeny. 

 
 Specificity matrix. A n x n matrix (table) can be developed to show: 

o parasite species richness (shown along diagonal) 
o similarity scores (the numbers of shared parasite species above diagonal) 
o difference/dissimilarity scores (numbers of non-shared species below diagonal) 

 
 Host species 

A B C D 
 
 
 

Host 
species 

A 3 
 

2 2 0 

B 1 2 
 

1 0 

C 1 2 2 
 

0 

D 4 3 3 1 
 

      

 
Interpretation: 

3 parasite species detected in host species A, 2 shared with B, 2 with C and none with D 
2 parasite species detected in host species B, 1 shared with A, 1 with C 
2 parasite species detected in host species C, 1 shared with A, 1 with B 
1 parasite species detected in host species D, not shared with others (= host specific) 

 
 Similarity matrix. A square symmetrical matrix with the similarity value of every pair of 

samples (if Q-mode) or species (if R-mode) in the data matrix. The similarity matrix is the basis 
for all multivariate techniques depicting relationships among community samples or taxa, so 
the choices made at the initial stage of an analysis will strongly influence the results at the final 
stage. Similarity matrices are required for cluster analysis. 

 
 Dissimilarity matrix. All similarity matrices can be converted to dissimilarity (difference) 

metrics by subtracting them from their maximum value. Difference matrices are required for 
ordination analysis. Analyses convert abundance data to presence/absence data to make all 
species equally important in characterizing a sample, regardless of their abundance. Compare 
dissimilarity of parasite assemblages, and evolutionary distance between host species. 
Dissimilarity matrix created using Sorensen’s Index of Similarity for each host pair, then 
visualized in ordination graph [non-metric multi-dimensional scaling (MDS) ordination] 
[similar approach to that of Nipperess et al. 2012 (examined plant phylogeny and insect 
assemblages)]. Evolutionary distance = age of MRCA (MYA) from molecular clock studies. 
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High host specificity indicated by positive correlation between dissimilarity of parasite 
assemblages of each host species and corresponding evolutionary distance 

 
                                                    host 
 
                  parasite                                                       dissimilarity 
 
 
 
                                                                                                                       MRCA 
                         Mantel test  
                    (Spearman correlation coefficient) 

 
      MDS axis 2                                         host 2 

                                                                         distance of line = dissimilarity 
                                                                  host 1 
 
   MDS axis 2 

 
 Tanglegrams (draw tanglegram of host-parasite associations) 

o LHS host arranged phylogenetically 
o RHS parasites arranged phylogenetically 
o central tangle = every pair shown by linked line 

 
  HOST       PARASITE 
   A      1 
   B      2 
   C      3 
   D      4 
   E      5 
         6 
 

- host phylogenetic perspective (related → shared hosts) [show host phylogenetic tree] 
- biogeographical perspective (sympatric → shared hosts) [show map of host distribution] 
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 Ecological niche is defined as a multidimensional hypervolume determined by environmental 
(biotic and abiotic) variables within which a species can exist.  Such dimensions include host 
range (host specificity), microhabitats, macrohabitats of the host, geographical range, sex and 
age of the host, season, food, hyperparasites, etc. Niches are restricted to varying degrees along 
all dimensions, particularly for parasites. Some infect a wide range of hosts and others are 
restricted to a single or a few hosts. Some exhibit high tissue tropism (select microhabitats), 
others may infect many tissues. Niches are also not static, but vary over time. Measures of 
niche width include: [Rohde & Rohde (2005) in Rohde (2005) p.286] 

o Levin’s niche width (B)  B = 1 / (Σp2) 
o Shannon-Weiner measure (H’) H’ = -Σp.logp 
o Smith’ measure (FT)   FT = Σ √(p.a) 

where p = proportion of individuals found 
 a = proportion of total resources 

The number of hosts utilized is particularly important for parasites. The degree of host 
specificity observed may be an artifact of sampling effort (often indicated by strong positive 
correlation between number of host species and number of time a parasite has been recorded). 

 
 Host specificity. Rohde distinguished between host range and host specificity. 

 
o Host range is the total number of host species found to harbour a certain parasites 

species, irrespective of prevalence and intensity. 
 

o Host specificity considers prevalence (percentage infected) and/or intensity (number 
of parasites per host individual). The most commonly used measure for specificity is 
Rohde’s specificity index (Si) 

Si = Σj [ xij / (nij.hij)] / Σj (xij/nij) 
 

If intensity is considered,  
xij = number of parasite individuals of i-th species in j-th host species; 
nij = number of host individuals of j-th species examined; 
hij = rank of host species j (species with greatest intensity has rank 1); and  
xij/nij = intensity of infection 
 

If prevalence (frequency) is considered,  
xij = number of host individuals of j-th species infected with parasite species i; 
nij = number of host individuals of j-th species examined; 
hij = rank of host species j (species with highest frequency has rank 1); and  
xij/nij = mean frequency of infection. 
 

Numerical values vary between 0 and 1. The closer to 1, the higher the degree of host 
specificity. However, the minimum value for Si depends on the number of host species 
used for calculating the index. Since most parasites infect fewer than 10 hosts (for which 
the minimum Si is about 0.2), the high value of Si does not necessarily mean a strong 
preference for a single or a few host species (thus making comparisons unreliable).  

 
Rohde’s index can also be modified to remove the problem of sensitivity to the number 
of host species infected 

Si = {[Σj [ xij / (nij.hij)] / Σj (xij/nij)] – [1 / j Σj (1/j)]} / [1 – (1/j) Σj (1/j)] 
where (1/j)Σj(1/j) = minimum possible Si (used to normalise Si); 
j = number of host species; and nij = number of individuals of host 
species j infected with parasite species i. 
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This modified equation is based on the assumption that for minimum possible Si all 
species have approximately the same value of xij/nij and maintain unique ranks. 
 

o Phylogenetic information can be added to this modified equation, by adding codes for 
the phyla, classes, orders, families and genera infected (P.C.O.F.G): as follows: 
1.1.1.1.1 = 1 phylum, 1 class, 1 order, 1 family, 1 genus infected 
1.2.5.6.7 = 1 phylum, 2 classes, 5 orders, 6 families, 7 genera infected 
For example, Si = 1.1.1.2.3.099 implies that 3 genera in 2 families in 1 order are 
infected but that almost all parasites are concentrated in a single host species; while 
Si = 2.2.2.2.3.02 implies that 2 phyla, 2 classes, 2 orders, 2 families and 3 genera are 
infected, and that infections are spread more or less evenly over all taxa. 
 
However, this does not consider the unevenness of infection between different taxa 
above the species level (which is included in Poulin & Mouillot’s STD index (below). 

 
 Host phylogenetic position. Many parasites infect several host species. If those host species are 

closely-related, the parasites should be considered more host specific than those infecting the 
same or smaller numbers of hosts belonging to different higher taxa. The phylogenetic position 
of the hosts can be considered using alternative measures than Si with phylogenetic information 
added (above). 

 
o Decimalized index (S.G.F.O.C) (HS). It was proposed that host specificity could be 

indicated by a decimalized system showing the breadth of the host taxonomic ranks 
(species, genus, family, order, class). For example, a species restricted to a single host 
species has the rank 1.1.1.1.1 = 1 while a species infecting 1,000 species, 500 genera, 
150 families, 75 orders and 5 classes (the maximum number in each taxon permitted by 
this index) has the rank 11 795 988 501. Rank values are calculated by enumerating all 
combinations of S, G, F, O and C. Using the log values of the ranks, index (HS) values 
of between 0 and 10 are reached (program available, Caira 2003).  
 
The index does not consider the prevalence or intensity of infection. It considers both 
the number of higher taxa involved and the number of species infected (e.g. a parasite 
found in a single host species has HS of 0, one found in 1000 species all in one genus 
has a HS of 3). However, the index is not sensitive to an uneven distribution of host 
species among higher taxa (e.g. HS is the same for 1 parasite infecting 3 host species in 
each of 10 genera; and for 1 parasite infecting 10 genera but 21 species in 1 genus and 
1 each in the other 9). The following modification was proposed. 

 
o Poulin & Mouillot’s index (STD) The host specificity of a parasite is not merely a 

function of how many host species it can exploit, but also of how closely related these 
host species are to each other. This index of host specificity takes into account the 
average taxonomic or phylogenetic distance between pairs of host species used by a 
parasite. The index is derived from measures of taxonomic distinctness used in 
biodiversity studies. When these host species are placed within a taxonomic hierarchy, 
based on the Linnean classification into phyla, classes, orders, families, genera and 
species, the average taxonomic distinctness is simply the mean number of steps up the 
hierarchy that must be taken to reach a taxon common to 2 host species, computed 
across all possible pairs of host species. Thus, if 2 host species are congeners, 1 step 
(species-to-genus) is necessary to reach a common node in the taxonomic tree; if the 2 
species belong to different genera but the same family, 2 steps will be necessary 
(species-to-genus, and genus-to-family); and so on, with these numbers of steps 
averaged across all host species pairs. For any given species pair, the number of steps 
corresponds to half the path length connecting two species in the taxonomic tree, with 
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equal step lengths of one being postulated between each level in the taxonomic 
hierarchy.  
 

 
 
The greater the taxonomic distinctness between host species, the higher the number of 
steps needed, and the higher the value of the index STD: thus it is actually inversely 
proportional to specificity. It is based on presence/absence data and does not consider 
the prevalence or intensity of infection. 

STD = 2 [ΣΣ i<j ωij] / [s(s-1)] 
where s = number of host species used by a parasite; 
double summation is over the set i=1….s; j=1…s, such that i<j), and 
ωij = taxonomic distinctness between host species I and j 
(or the number of taxonomic steps required to reach a node common to both) 

The greater the number of steps, the larger the value of STD. Using the standard 5 
taxonomic levels above species i.e. genus, family, order, class and phylum, the 
maximum value that the index STD can take (when all host species belong to different 
classes) is 5, and its lowest value (when all host species are congeners) is 1. The index 
measures the average taxonomic distinctness between host species, but not all the 
asymmetries in the taxonomic distribution of host species across higher taxa. The 
following modification was proposed. 

 
o Variance of distribution (VarSTD) considers asymmetries in the taxonomic distribution 

of host species. 
VarSTD = ΣΣ i≠j (ωij – ω)2 / [s(s-1)] 

where ω = average taxonomic distinctness, or STD. 
The variance can only be computed when a parasite uses no fewer than 3 host species. 
It also does not consider the number of species in a genus infected (e.g. STD (=1) for 
species found in 20 congeneric host species is same as one found in 5). 

 
 Inter-specific associations. The distribution of parasites among individuals in a host population 

(infracommunity) can range from random to structured (with the distribution of different 
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parasite species associated negatively or positively). The null hypothesis is that the probability 
of occurrence of any parasite species in a host individual is equal to its prevalence in the host 
population, and is completely independent of the presence of other parasite species. Analyses 
can be conducted on associations between two parasite species (pairwise) or multiple parasite 
species (nestedness). 

 
o Covariance (associations between pairs of parasites). When considering all possible 

pairwise associations, the number of positive covariances should equal the number of 
negative covariances if infra-communities are assembled randomly. However, positive 
covariances often outnumber negative ones for parasites. Pairwise associations can be 
analysed using either prevalence or abundance data (although the two methods usually 
give congruent results). 

 
o Nestedness (associations between multiple parasite species). Rather than analyse data 

one pair at a time, it is possible to analyse data sets comprising multiple parasite 
species. 

 presence/absence matrix (parasite species rows, individual hosts columns) 
test for presence of nested species subsets (nestedness) (rare species often 
found only in species-rich hosts) 

 test for departure from ‘null’ model based on each species’ prevalence, using 
Monte-Carlo simulations 

 nestedness often associated with older (bigger) hosts as they accumulate 
infections with time 

 repeatability of community structure in space (other locations) or time 
(seasons). Are they similar (strong consistent structuring processes) or 
different (too dynamic for any structuring forces) 

 processes may include: 
- interspecific competition (niche apportionment, food..) 
- transmission (similar, linked, independent)(same life-cycles, same 

alternate hosts) 
- host food preferences, foraging behaviours 

 
Patterns of community structure often differ between different populations of a single 
host species suggesting they are transient properties and that parasite communities are 
shaped by multiple forces acting simultaneously. Analyses may be profoundly affected 
by small sample sizes. 
 
The RANDOM1 algorithm (Patterson & Atmar, 1986) can be used to compute an index 
of nestedness for all locations in all host species (indicating whether parasite species 
followed a nested pattern within samples). Only parasite component communities 
involving at least 3 different parasite species are included (nestedness is meaningless 
for communities of 1 or 2 species).  The index of nestedness N was computed for each 
component community. N corresponds to the sum, among all parasite species, of the 
instances in which a parasite species is absent from infra-communities richer than the 
most species-poor infra-community in which it occurs. For each component 
community, the observed N value is compared with N values of 1,000 randomly 
generated presence/absence matrices produced using RANDOM1. In these Monte Carlo 
simulations, the probability of each species being included in an infra-community was 
set as equal to its observed prevalence in the studied host sample. The proportion of 
simulated N values that were lower than or equal to the observed N value provided the 
RANDOM1 P value, which was used as a measure of departure from the structure 
expected from random assembly. When the RANDOM1 P value is < 0.05, the infra-
communities are significantly nested; when the P value is > 0.95, they have a significant 
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anti-nested pattern. Either significant nestedness or anti-nestedness is considered a 
departure from a random assemblage. 

 
 Host-parasite co-speciation, host-switching, ecological fitting (Brooks et al., 2006). There are 

two approaches to studying the evolution of host-parasite associations.  
o Co-speciation is based upon comparing host-parasite phylogenies and identifying points of 

congruence. There are no assumptions about underlying processes, nor is there an 
expectation of complete congruence. Incongruent portions of host-parasite phylogenies 
require further investigation into the influence of other factors (e.g., dispersal and host 
switching). For example, parasites might diverge more rapidly than their hosts via sympatric 
speciation, producing sister species inhabiting the same host (lineage duplication), or 
ecological or immunological evolution in the host lineage could cause parasite extinction 
(lineage sorting or missing the boat). 

o Maximum (synchronous) co-speciation assumes that hosts and their parasites share such a 
specialized and exclusive evolutionary association and that speciation in one lineage causes 
speciation in the other. Host parasite phylogenies are thus expected to be completely 
congruent, with departures from congruence explained by invoking extinction in one lineage 
or the other.  

 
The two approaches differ with respect to the importance of host switching during the evolution 
of host-parasite associations. It is assumed that hosts and parasites share a specialized exclusive 
evolutionary association, making it extremely unlikely that a parasite could change host 
species. This assumption, however, arises from believing that it is the host species, not a 
biological characteristic or combination of characteristics of the host, that is important to the 
parasite. Once researchers began thinking in terms of traits rather than taxonomy, it became 
evident that parasites might be able to switch hosts if the trait they were tracking was shared 
among two or more hosts. The fact that present-day associations might be shaped in part by the 
distribution of phylogenetically conservative traits is called ecological fitting. 

 
There are many macro-evolutionary manifestations of ecological fitting. For example, any 
given parasite species might be a resource specialist, but also might share that specialist trait 
with one or more close relatives. That is, specialization on a particular resource can be 
plesiomorphic within a group. On the other hand, the resource itself might be at once very 
specific and taxonomically and geographically widespread if it is a persistent plesiomorphic 
trait in the hosts. The evolutionary basis for ecological fitting is thus deceptively simple, yet 
powerful. If specific cues/resources are widespread, or if traits can have multiple functions (or 
both), then the stage is set for the appearance of ecological specialization and close (co) 
evolutionary tracking as well as host switching. Ecological fitting thus explains how a parasite 
can be ecologically specialized and still switch hosts: if the resource is widespread across many 
host species, then the parasite can take advantage of an opportunity to establish a "new" 
specialized association without the cost of evolving novel abilities. Just because a resource is 
widespread does mean that it is automatically available. The geographic distribution of the 
parasite might not coincide with the geographic distribution of all hosts having the resource, or 
some other aspect of host biology might make the resource inaccessible to the parasite. For 
example, if host species A bearing resource x is highly abundant in a community, then less-
abundant host species B and C, which also bear x might not be "apparent" to a parasite 
specializing on that resource. Such density-dependent factors provide the appearance of close 
ecological tracking between the parasite and species A at time T0. If some environmental 
stressor later decreases the abundance of species A, and C becomes relatively more apparent, 
then the parasite will become associated with C at time T. This manifestation of ecological 
fitting could explain seemingly rapid and virtually unconstrained evolution of novel specialized 
host associations. Finally, a parasite might have a hierarchy of host preferences, even though it 
is tracking the same resource. The hierarchy arises because the costs of accessing the resource 
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might not be identical across all host species or even across individuals in the same species. 
Such costs will depend on many different factors, including concentration of the resource, host 
density, and difficulty in extracting the resource. Overall, parasites accessing a 
plesiomorphically (or, less often, homoplasiously) distributed resource are "faux generalists": 
specialists whose host range appears large, but who are in reality using the same resource. If a 
parasite species evolves the ability to utilize a novel resource, a second and more complicated 
type of host preference hierarchy can arise if the parasite also retains sufficient information to 
use the plesiomorphic resource.  
 
Ecological fitting is generally investigated in insect plant systems, because researchers can 
reconstruct phylogenetic patterns of association between the two clades, then examine the 
processes underlying those patterns by (1) identifying the resource being tracked by the insect, 
(2) determining the distribution of that resource among host plants, and (3) delineating the host 
preference hierarchy of the insects. Currently, we do not have this degree of detailed 
information for any host-parasite system. It is possible, however, to take advantage of "natural 
experiments", or even to make inferences based on contemporary patterns of host-parasite 
association, if hosts vary in their use of a habitat to which parasite species are constrained. The 
associations between anurans and their platyhelminth parasites provide a model system for such 
an investigation, because the majority of helminths require water for the development and 
transmission of infective stages, while most, but not all, major groups of anurans have a sexual 
and developmental tie to aquatic habitats. It was suggested that species richness in anuran 
parasite communities was directly related to the amount of time the host spent in or near water. 
A shared plesiomorphic requirement for an aquatic habitat, coupled with a gradient of adult 
anuran preferences ranging from aquatic to arboreal, suggests that ecological fitting as a 
determinant of the parasites associated with a given anuran taxon should be evidenced as a 
nested-subset structure of host-parasite associations across anuran taxa. At one extreme, if all 
the host-parasite associations are the result of ecological fitting, then all host taxa are 
interchangeable from the point of suitability for the parasites, and associations will be 
determined solely by the habitats the host utilizes and its feeding preferences. The shared 
requirement of tadpoles for aquatic habitats should thus provide a baseline assemblage of 
parasites that infect the tadpole stage, while the parasites of adult anurans should accumulate 
in anuran host species as a function of the time they spend in aquatic habitats as adults. If 
specialized coevolutionary processes dominate, sympatry between anurans and the infective 
parasitic stages will result in parasitism of only appropriate hosts, producing idiosyncratic (i.e., 
"unexpected") presences absences in the matrix of host-parasite associations. 
 
Examination of the nested-subset structure of parasite genera within the pooled anuran genera 
across all six localities was conducted using the nestedness temperature calculator, which 
calculates the temperature of the matrix (a measure of order, with lower temperatures indicating 
a higher degree of order) and idiosyncratic host and parasite temperatures, which indicate host 
species and parasite species contributing disproportionately to the lack of order in the matrix. 
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IX. Correlations 
 

 Spearman’s rank correlation coefficient (rs) 
 

 Pearson product-moment correlation coefficient (r). The basic measure of correlation in 
classical statistics is Pearson’s product-moment correlation coefficient (r). This is the 
covariance scaled by products of the standard deviations of the two variables. 
  r = Σ(xai – xai)(xbi – xbi) / √[Σ(xai – xai)2(xbi – xbi)2] 
 
This coefficient plays critical role in many techniques of parametric ordination, such as 
Principal Components Analysis (PCA), but as a measure of ecological similarity, it is very 
susceptible to sparse data (i.e. data matrices with many zeros indicating that many species do 
not occur in many samples). [Note that r is the dot product of two z-transformed vectors of 
data]. 
 
Look for correlations between: 

o prevalence and abundance/intensity 
 

Then look for correlations between parasite prevalence/abundance with: 
o host phylogeny (species) 
o biogeography (distribution) 

 spatial (location, colonies, etc) 
 temporal (seasons) 

o host population demographics  
 size/age 
 gender 
 castes 
 diets 
 behaviours 

o parasite population dynamics 
 size 
 diet 
 motility/cytoskeleton 
 organelles (mitochondria/hydrogenosomes) 
 symbiotic bacteria (ecto/endo, cytoplasmic/nuclear) 
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X. Equilibrium or Non-equilibrium 
 

Do species live under equilibrium or non-equilibrium conditions?  
Are populations in balance? Are dynamical changes balanced (e.g. births/deaths, predator/prey, 
emigration/immigration, etc.). 
 

 Equilibrium assumptions (Hubbell’s neutral theory of biodiversity) 
o communities saturated with individuals leading to zero-sum game 
o saturation with species 
o open communities 

 
 Contrary paradigm, non-equilibrium prevails. Few populations reach equilibrium because: 

o repeated strong disturbances (storms, fires, droughts, predation..) 
o many habitats not saturated with species 
o interspecific competition occurs 

 
Parasites often live in non-saturated non-equilibrium assemblages. Evident when: 

o prevalence/abundance is very low 
o empty niches common 
o mating hypothesis of niche restriction 
o nestedness uncommon 
o rare hyperparasites 
o spatial scaling laws do not apply 
o little evidence for non-random co-occurrences 
o assemblages log series or log normal distributions 
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XI. Principal Components Analysis (PCA). This statistical method used to reduce the number of 
variables in a dataset by lumping highly correlated variables together (this comes at the expense 
of accuracy). However, if you have 50 variables and realize that 40 of them are highly correlated, 
you trade-off accuracy for simplicity. 
 
Principal component analysis (PCA) is a powerful yet simple method widely used for analyzing 
high dimensional datasets. When dealing with datasets such as gene expression measurements, 
some of the biggest challenges stem from the size of the data itself. Transcriptome wide gene 
expression data usually have 10,000+ measurements per sample, and commonly used sequence 
variation datasets have around 600,000 - 900,0000 measurements per sample. The high 
dimensionality not only makes it difficult to perform statistical analyses on the data, but also 
makes the visualization and exploration of the data challenging. These datasets are typically 
never fully visualized because they contain many more datapoints than you have pixels on your 
monitor. PCA can be used as a data reduction tool, enabling you to represent your data with 
fewer dimensions, and to visualize it in 2-D or 3-D where some patterns that might be hidden in 
the high dimensions may become apparent. 
 
Another way to think about PCA is in terms of removing redundancy between measurements in 
a given dataset. What we do is getting rid of the redundancy in the data by grouping the related 
measurements together into a dimension. In PCA these dependencies, or relationships between 
measurements are assessed by calculating the covariance between all the measurements. So how 
do we calculate covariance? First, let us begin with the variance of a single variable which is 
calculated by: 

E[(x - x)2] = s2 = Σ(xi - x)2 / (n – 1) 
Covariance can simply be thought of as variance with 2 variables, which takes this form: 

E[(x - x)(y – y)] = cov(x,y) = Σ(xi - x)(yi – y) / (n – 1) 
If this looks familiar you are not mistaken. Correlation between two variables is just a scaled 
form of covariance, which only takes values between -1 and 1. 

cor(x; y) = cov(x,y) / σxσy 
So just like correlation, covariance will be close to 0 if the two variables are independent and 
will take a positive value if they tend to move in the same direction and a negative value if the 
opposite is true. 

 
A simple example involves a dataset of two variables: e.g. 

 D = Dow Jones Industrial Average (a stock market index), and 
 S = S&P 500 aggregate (another market index) 

Not surprisingly, the D and S are highly correlated (their daily % readings move together). The 
paired data-points are represented in 2 axes: X and Y. PCA allows the data to be represented 
along one axis (called the principal component) (represented by line): 

 
Reducing the data to a single axis will reduce accuracy because the data varies about the axis. 
In PCA, the following steps are conducted to transform the data. 
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 1. Standardize the scale of the data. This was done by transforming the data into daily % 

change (now both D and S occur on a 0-100 scale). 
 

 2. Calculate covariance matrix for data. The covariance between D and S is a measure of 
how the two variables move together. 

cor (X,Y)   =  cov(X,Y) / (σX.σY) 
The covariance matrix looks like: 

         Cov(DJIA,DJIA)   Cov(DJIA,S&P)                  Var(DJIA)            Cov(DJIA,S&P) 
          Cov(S&P, DJIA)   Cov(S&P,S&P)                Cova(S&P,DJIA)        Var(S&P) 
 
               0.7846    0.8012 
               0.8012    0.8970 
 
 3. Deduce eigens: Eigenvectors and values exist in pairs: every eigenvector has a 

corresponding eigenvalue. An eigenvector is a direction (vertical, horizontal, 45 degrees etc.) 
and an eigenvalue is a number representing the amount of variance in the data in that direction 
(i.e. telling us how spread out the data is on the line). The eigenvector with the highest 
eigenvalue is the main principal component. This becomes the new X-axis and a line 
perpendicular to it becomes the new Y axis (the other principal component). 

 
The data are now rotated to fit the new axes. The coordinates of the rotated data are calculated 
by converting the data by multiplying them by eigenvectors, which indicate the direction of 
the new axes (principal components). First, the eigenvectors (one per axis) are deduced where 
each eigenvector correspond to an eigenvalue, whose magnitude indicates how much of the 
data’s variability is explained by its eigenvector. The definition of eigenvalue and eigenvector 
is: [Covariance matrix].[Eigenvector] = [eigenvalue].[eigenvector] 
This equation and the covariance matrix are used to yield the eigenvalues (e) and eigenvectors 
(E): 

e1 = 1.644           E1  =     0.6819                      e2 = 0.0376          E2  =    -0.7314 
                                                      -0.7314                                                                0.6819 

 
 4. Re-orient data. Since the eigenvectors indicates the direction of the principal components 

(new axes), the original data is multiplied by the eigenvectors to re-orient the data (which is 
now called a score, Sc).  
Sc   = [orig.data].[eigenvectors] =     DJIA1    S&P1       x          0.6819    0.7314 
              DJAIn S&Pn                  -0.7314   0.6819 
 

 5. Plot re-oriented data. The rotated data (scores) are now plotted. 
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 6. Bi-plot. A PCA would not be complete without a bi-plot. This is basically the plot above, 

except the axes are standardized on the same scale, and arrows are added to depict the original 
variables. 
o Axes: In the bi-plot, the X and Y axes are the principal components. 
o Points: These are the dat points (D and S) re-oriented to the new axes. 
o Arrows: The arrows point in the direction of increasing values for each original variable. 

For example, points in the top right quadrant will have higher D readings than points in the 
bottom left quadrant. The closeness of the arrows means that the two variables are highly 
correlated. 

 
PCA was performed using R, with help of ggplot2 package for graphs. Applying PCA in R is 
very simple once you get familiar with the outputs of the functions that perform PCA. Similarity 
patterns in parasite community structure between host individuals can be assessed by PCA using 
arcsin-transformed population ratio data for different colonies. The first principal component 
(PC1) score can be subjected to F-tests to compare the degrees of community structure variation 
between castes and colonies. All analyses can be carried out with R version 2.9.2 (http://www.r-
project.org/) using a function “princomp2” by Aoki (http://aoki2.si.gunma-u.ac.jp/R/pca.html). 
Hierarchial cluster analyses (“hclust” package for R) using the Bray-Curtis distance may be used 
to identify geographic regions with similar parasite assemblages. The unweighted pair group 
method with arithmetic mean (UPMGA) agglomerative algorithm chosen after analysis of 
cophenetic correlation coefficients (Pearson correlation between cophenetic distances calculated 
on cluster branches and the parasite dissimilarity matrix). 
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Analyses can also be conducted in Excel using XLSTAT software (see on-line tutorials). 
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XII. Correspondence analyses 
 

Canonical Correspondence Analysis (CCA) was used to characterize associations between lake 
environmental variables and characteristics of the parasite component communities. CCA is a 
common type of multivariate analysis that is used to 1) infer species-environment relationships, 
and 2) detect patterns that are best explained by a particular set of environmental variables. CCA 
was performed on the statistical package PC-ORD (Version 2.0). The highest canonical 
coefficients indicated those environmental variables with the most influence on parasite 
community structure. 
 

Correspondence analysis (CA) or reciprocal averaging is a multivariate statistical technique 
conceptually similar to principal component analysis, but applies to categorical rather than 
continuous data. In a similar manner to principal component analysis, it provides a means of 
displaying or summarising a set of data in two-dimensional graphical form. All data should be 
nonnegative and on the same scale for CA to be applicable, keeping in mind that the method 
treats rows and columns equivalently. It is traditionally applied to contingency tables — CA 
decomposes the Chi-squared statistic associated with this table into orthogonal factors. Because 
CA is a descriptive technique, it can be applied to tables whether or not the Chi-squared statistic 
is appropriate. 
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XIII. Cluster Analysis 
 

Cluster analysis is a multivariate method which aims to classify a sample of subjects (or objects) 
on the basis of a set of measured variables into a number of different groups such that similar 
subjects are placed in the same group. The objective is to assign observations to groups (clusters) 
so that observations within each group are similar to one another with respect to variables or 
attributes of interest, and the groups themselves stand apart from one another. In other words, 
the objective is to divide the observations into homogeneous and distinct groups. In contrast to 
the classification problem where each observation is known to belong to one of a number of 
groups and the objective is to predict the group to which a new observation belongs, cluster 
analysis seeks to discover the number and composition of the groups. However, cluster analysis 
has no mechanism for differentiating between relevant and irrelevant variables. The choice of 
variables included in a cluster analysis must be underpinned by conceptual considerations. This 
is very important because the clusters formed can be very dependent on the variables included. 
 
The data used in cluster analysis can be interval, ordinal or categorical. A number of different 
measures have been proposed to measure ’distance’ for binary and categorical data. For interval 
data the most common distance measure used is the Euclidean distance. If you have two variables 
X1 and X2 measured on a sample of n subjects, the observed data for subject i can be denoted by 
x1i and x2i, and the observed data for subject j by x1j and x2j.  
 
                                         X2 
                                                                                   i 
                                          X2i                     C 
                                                            j                      B 
                                          X2j 
                                                                       A 
 
                                                           X1j             X1i         X1 
 
The Euclidean distance between two subjects is given by calculating the length of the hypotenuse 
of the triangle ABC using Pythagoras theorem (i.e. the distance between the two points i and j is 
calculated using their coordinates to indicate rise B and run A): 

Dij  = √A2 + B2  =   √(x1i − x1j)2 + (x2i − x2j)2 
Alternative measures are the squared Euclidean distance D2: 

D2ij  = A2 + B2  =   (x1i − x1j)2 + (x2i − x2j)2 
or the city block distance (D3) (the long way round the block, i.e. the sum of A and B): 

D3ij  = |A| + |B|  =  |x1i − x1j| + |x2i – x2j| 
The distance measures can be extended to more than two variables. If you have p variables X1, 
X2, . . Xp measured on a sample of n subjects, the observed data for subject i can be denoted by 
x1i, x2i, . .xpi and the observed data for subject j by x1j, x2j, . . xpj. and the Euclidean distance is: 

Dij = √(x1i − x1j)2 + (x2i − x2j)2 + . . . + (xpi − xpj)2 
 
When using Euclidean distance, the scale of measurement of the variables under consideration 
is an issue, as changing the scale will obviously effect the distance between subjects. If one 
variable has a much wider range than others, then this variable will tend to dominate. To get 
around this problem, each variable can be standardised (converted to z-scores). However, this in 
itself presents a problem as it tends to reduce the variability (distance) between clusters. Many 
textbooks recommend standardisation, although if in doubt, one strategy would be to carry out 
the cluster analysis twice — once without standardising and once with — to see how much 
difference this makes to the resulting clusters. 
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Once the cluster analysis has been carried out, it is necessary to select the ’best’ cluster solution. 
There are a number of ways in which this can be done, some rather informal and subjective, and 
some more formal. When carrying out a hierarchical cluster analysis, the process can be 
represented on a diagram known as a dendrogram. This diagram illustrates which clusters have 
been joined at each stage of the analysis and the distance between clusters at the time of joining. 
If there is a large jump in the distance between clusters from one stage to another then this 
suggests that at one stage clusters that are relatively close together were joined whereas, at the 
following stage, the clusters that were joined were relatively far apart. This implies that the 
optimum number of clusters may be the number present just before that large jump in distance.  
 
The following example is used to show how to carry out variations of cluster analyses. For this 
example, take a set of data where observations are made on 2 variables for 5 individuals: 

Host X1 X2 
a 2 4 
b 8 2 
c 9 3 
d 1 5 
e 8.5 1 

It can be plotted as: 
                                 X2 
                                           d 
                                                a 
                                                                       c 
                                                                  b 
                                                                      e 
                                                                                X1 
 
The Euclidean distances between pairs are calculated and tabulated in a difference matrix (n x 
n = 5 x 5); e.g. the distance between a and b = √[(2-8)2 + (4-2)2] = √(36+4)  = 6.325; etc. 

Cluster a b c d e 
a 0 6.325 7.071 1.414 7.159 
b  0 1.414 7.616 1.118 
c   0 8.246 2.062 
d    0 8.500 
e     0 

 
There are two main approaches to cluster analysis: 
 
 Hierarchical methods (step-wise) 

 
o Hierarchical agglomerative methods in which subjects start in their own separate 

cluster. The two ’closest’ (most similar) clusters are then combined and this is done 
repeatedly until all subjects are in one cluster. It is a hierarchical agglomerative method 
because all clusters formed consist of mergers of previously formed clusters. At the end, 
the optimum number of clusters is then chosen out of all cluster solutions. Within this 
approach to cluster analysis there are a number of different methods used to determine 
which clusters should be joined at each stage: 
 
 Nearest neighbour method (single linkage method). In this method the distance 

between two clusters is defined to be the distance between the two closest 
members, or neighbours. This method is relatively simple but is often criticised 
because it doesn’t take account of cluster structure and can result in a problem 
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called chaining whereby clusters end up being long and straggly. However, it is 
better than the other methods when the natural clusters are not spherical or 
elliptical in shape.  

 
The smallest distances between pairs is selected to form the first cluster (here 
comprising b and e): 

Cluster a b c d e 
a 0 6.325 7.071 1.414 7.159 
b  0 1.414 7.616 1.118 
c   0 8.246 2.062 
d    0 8.500 
e     0 

 
The cluster can be indicated as: 
                                 X2 
                                           d 
                                                a 
                                                                       c 
                                                                  b 
                                                                      e 
                                                                                X1 
 
The difference matrix is then collapsed to a (n-1) x (n-1) matrix where b and e are 
clustered together. In the nearest neighbour method, the smallest distance between 
cluster (be) and other observations is chosen: 
e.g. D(be,a) = min{D(b,a), D(e,a)} = min{6.325, 7.159} = 6.325; etc 

Cluster be a  c d 
be 0 6.325  1.414 7.616 
a  0  7.071 1.414 
c    0 8.246 
d     0 

The next smallest distance is selected to indicate the next cluster, in this case (ad). 
These steps are repeated reiteratively, until everything is collapsed into one 
cluster.  
                                 X2 
                                           d 
                                                a 
                                                                       c 
                                                                  b 
                                                                      e 
                                                                                X1 
The Euclidean distances between observations are also used to construct a tree 
diagram (dendrogram) 

                                         distance 
 
 
 
 
 
 
                                                              c    b     e    a     d 
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 Furthest neighbour method (complete linkage method). In this hierarchical 
method the distance between two clusters is defined to be the maximum distance 
between members — i.e. the distance between the two subjects that are furthest 
apart. This method tends to produce compact clusters of similar size but, as for 
the nearest neighbour method, does not take account of cluster structure. It is also 
quite sensitive to outliers. 

In this case, D(be,a) = max{D(b,a), D(e,a)} 
 

 Average linkage method (sometimes referred to as UPGMA). The distance 
between two clusters is calculated as the average distance between all pairs of 
subjects in the two clusters. This hierarchical method is considered to be a fairly 
robust.  

In this case, D(be,a) = average{[D(b,a)+D(e,a)]/2} 
An SPSS program can be used to run the average linkage method based on the 
Euclidean dissimilarity coefficient matrix. 

 
 Centroid method. Here the centroid (mean value for each variable) of each cluster 

is calculated and the distance between centroids is used. Clusters whose centroids 
are closest together are merged. This method is also fairly robust. 

 
 Ward’s method. In this method all possible pairs of clusters are combined and the 

sum of the squared distances within each cluster is calculated. This is then 
summed over all clusters. The combination that gives the lowest sum of squares 
is chosen. This method tends to produce clusters of approximately equal size, 
which is not always desirable. It is also quite sensitive to outliers. Despite this, it 
is one of the most popular methods, along with the average linkage method. 

 
o Hierarchical divisive methods in which all subjects start in the same cluster and the 

above strategy is applied in reverse until every subject is in a separate cluster. 
Agglomerative methods are used more often than divisive methods. 
 
The following SPSS program can be used for hierarchical cluster analysis: 
– Analyze 
– Classify 
– Hierarchical cluster 
– Select the variables you want the cluster analysis to be based on and move them 

into the Variable(s) box. 
– In the Method window select the clustering method you want to use. Under 

Measure select the distance measure you want to use and, under Transform 
values, specify whether you want all variables to be standardised (e.g. to z-scores) 
or not. 

– In the Statistics window you can specify whether you want to see the Proximity 
Matrix (this will give the distance between all observations in the data set — only 
really recommended for relatively small data sets!). You can also specify whether 
you want the output to include details of cluster membership — either for a fixed 
number of clusters or for a range of cluster solutions (e.g. 2 to 5 clusters). 

– In the Save window you can specify whether you want SPSS to save details of 
cluster membership — again, either for a fixed number of clusters or for a range 
of cluster solutions (e.g. 2 to 5 clusters). If you ask it to do this, this information 
will be included as additional variables at the end of the data set. 

– In the Plots window you can specify which plots you would like included in the 
output. 

– OK 
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Non-hierarchical methods (notable example being the k-means clustering method, often 
employed for quick clustering by some statistical programss). In these methods the desired 
number of clusters is specified in advance and the ’best’ solution is chosen. Non-hierarchical 
cluster analysis tends to be used when large data sets are involved. It is sometimes preferred 
because it allows subjects to move from one cluster to another (this is not possible in hierarchical 
cluster analysis where a subject, once assigned, cannot move to a different cluster). Two 
disadvantages of non-hierarchical cluster analysis are that it is often difficult to know how many 
clusters you are likely to have and therefore the analysis may have to be repeated several times, 
and that it can be very sensitive to the choice of initial cluster centres. The steps in such a method 
are as follows: 

o Choose initial cluster centres (essentially this is a set of observations that are far apart 
— each subject forms a cluster of one and its centre is the value of the variables for 
that subject).  

o Assign each subject to its ’nearest’ cluster, defined in terms of the distance to the 
centroid.  

o Find the centroids of the clusters that have been formed.  
o Re-calculate the distance from each subject to each centroid and move observations 

that are not in the cluster that they are closest to.  
o Continue until the centroids remain relatively stable. 

 
The following SPSS program can be used for K-means cluster analysis 
– Analyze 
– Classify 
– K-means cluster 
– Select the variables you want the cluster analysis to be based on and move them 

into the Variable(s) box. 
– Under Method, ensure that Iterate and Classify is selected (this is the default). 
– In the Iterate window you can specify how many iterations you would like SPSS 

to perform before stopping. The default is ten. It might be worth leaving it as ten 
to start with and then increasing this if convergence doesn’t occur (i.e. a stable 
cluster solution is not reached) within ten iterations. 

– In the Save window you can specify whether you want SPSS to save details of 
cluster membership and distance to the cluster centre for each subject 
(observation). 

– OK 
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XIV. Within-host parasite community interaction network (Pedersen & Fenton, 2006) 
 

Parasite community ecology has been highly descriptive, driven by pattern-based analyses at 
the host population level. Broadly, two main approaches have been adopted to examine parasite 
communities, although these are not mutually exclusive. The first classifies parasite 
communities based on patterns of species occurrence (presence and absence data) and tests for 
community structuring by comparing observed species distributions against null models. The 
second approach quantifies pairwise associations between species, inferring interspecific 
interactions from correlations in species abundance or more complex models that control for 
biotic and abiotic factors. However, although these approaches provide a basic description of 
parasite communities at the host population level, they provide little mechanistic insight into 
the within-host processes shaping these patterns. 
 
To obtain a mechanistic understanding of parasite communities, we need to consider the 
network of interactions (both direct and indirect) that occurs between parasite species within 
an individual host. The most common interaction networks in community ecology are food 
webs, which incorporate explicit trophic structure and directionality such that primary 
producers (basal level) are consumed by species at the intermediate level, which are in turn, 
consumed by predators higher up the network. This can be illustrated with a hypothetical 
within-host parasite network comprising three trophic levels: host resources, the parasite 
community and the host immune system. 
 Level 1: host resources: The basal level is defined by host resources, which can be a specific 

component that parasites feed on (e.g. blood), or the physical space available (e.g. within 
the gastrointestinal tract). Parasite feeding or growth depletes resources and debilitates the 
host, indirectly affecting other parasites within the community. 

 Level 2: the parasite community. The second level includes all parasites (both micro- and 
macro-parasites) that infect the host. Where possible, parasite species should be placed into 
functional guilds of similar species. Defining guilds can be controversial but we suggest 
they should be based on functional similarity of species rather than on taxonomic 
classifications. In particular, parasite guilds can be defined in terms of a shared niche, where 
species differentiate themselves along three major axes: 

o a resource axis (e.g. what resources do the parasites feed on?);  
o a location axis (e.g. where do the parasites occur within the host?); and 
o an immunological axis (e.g. what components of the immune response of the host 

do the parasites stimulate?). 
The location of a parasite along each of these axes defines its niche and parasites occupying 
similar niches (i.e. occupying similar locations, consuming similar resources and 
stimulating comparable host immune responses) can be placed in the same guild. However, 
there is a degree of subjectivity in the definition of guilds and it should be seen as a 
simplifying approach. Frequently, individual species will occupy their own unique guild. 

 Level 3: host immune system. The third level comprises the immune system of the host, 
which is analogous to a predator trophic level in community ecology food webs. This 
predator–prey analogy of host immunity–parasites is frequently adopted for modelling 
the within-host dynamics of single pathogen species, where the immune response 
‘consumes’ the pathogen. This trophic level can be divided into different components of 
the immune system (i.e. cellular response, humoral response and T-helper cell types), 
akin to a suite of generalist and specialist predators, with potential interactions between 
them. 
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Figure. A hypothetical within-host parasite community interaction network defined with 
three levels of explicit trophic structure; given that parasites consume resources of the host 
for development, reproduction and transmission, and the immune system acts as a predator 
destroying the infecting pathogens. The basal level is defined by the host resources, 
analogous to the primary producers in a typical free-living food web. However, by contrast, 
host resources are inextricably linked to each other (white arrows) because the fitness and 
survival of the host depends on all resource components. The intermediate level comprises 
the parasites (colored circles) and parasite guilds that infect the host. Pathogens that 
consume similar resources, share a locality within the host and are attacked by the same 
components of the immune system can be considered parasite guilds (boxes), in which 
direct interactions between parasites are most probable (unidirectional arrows). Parasite 
guilds can comprise a single species. The vertical arrows represent the flux of energy from 
host to pathogen. The top trophic level represents the diverse responses of the immune 
system that vary in their degree of specificity. Here, we highlight a few common 
components (boxes), and use solid colored arrows to represent the aspects of the immune 
system that target each parasite or parasite guild, whereas the dashed arrows represent the 
top-down indirect interactions of co-infection parasites, mediated by the immune system. 

 
Parasites can substantially affect host populations and community structure by influencing 
host mortality, fecundity, growth, nutritional status, energetic requirements, and behavior. 
Such host–parasite interactions may shape components of an ecological community other 
than the host population, particularly if the host is abundant or ecologically influential. For 
example, parasites may weaken competitively dominant hosts, altering the outcome of 
competition between the host and its competitors. Parasites are also known to alter rates of 
predation, and hence, the feeding ecology of predators and population dynamics of prey. 

 
The traditional method for detecting community structure in biological networks is 
hierarchical clustering. One first calculates a weight Wij for every pair i,j of vertices in the 
network, which represents in some sense how closely connected the vertices are. Then one 
takes the n vertices in the network, with no edges between them, and adds edges between 
pairs one by one in order of their weights, starting with the pair with the strongest weight 
and progressing to the weakest. 
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As edges are added, the resulting graph shows a nested set of increasingly large 
components (connected subsets of vertices), which are taken to be the communities. 
Because the components are properly nested, they all can be represented by using a tree of 
the type shown in Fig. 2, in which the lowest level at which two vertices are connected 
represents the strength of the edge that resulted in their first becoming members of the 
same community. 

 
 

A ‘‘slice’’ through this tree at any level gives the communities that existed just before an 
edge of the corresponding weight was added. Trees of this type are sometimes called 
dendrograms in the sociological literature. Many different weights have been proposed for 
use with hierarchical clustering algorithms.  
 
 One possible definition of the weight is the number of node-independent paths between 

vertices. Two paths that connect the same pair of vertices are said to be node-
independent if they share none of the same vertices other than their initial and final 
vertices. One can similarly also count edge-independent paths. It is known that the 
number of node-independent (edge-independent) paths between two vertices i and j in 
a graph is equal to the minimum number of vertices (edges) that must be removed from 
the graph to disconnect i and j from one another. Thus these numbers are in a sense a 
measure of the robustness of the network to deletion of nodes (edges). Numbers of 
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independent paths can be computed quickly by using polynomial-time ‘‘max-flow’’ 
algorithms such as the augmenting path algorithm. 

 
 Another possible way to define weights between vertices is to count the total number of 

paths that run between them (all paths, not just those that are node- or edge-
independent). However, because the number of paths between any two vertices is 
infinite (unless it is zero), one typically weights paths of length L by a factor αL with α 
small, so that the weighted count of the number of paths converges. Thus long paths 
contribute exponentially less weight than those that are short. If A is the adjacency 
matrix of the network, such that Aij is 1 if there is an edge between vertices i and j and 
0 otherwise, then the weights in this definition are given by the elements of the matrix: 

W = Σ∞L=0 (αA)L  =  [1 – αA]-1 
For the sum to converge, we must choose α smaller than the reciprocal of the largest 
eigenvalue of A. 

 
Both of these definitions of the weights give reasonable results for community structure in 
some cases. In other cases they are less successful. In particular, both have a tendency to 
separate single peripheral vertices from the communities to which they should rightly 
belong. If a vertex is, for example, connected to the rest of a network by only a single edge 
then, to the extent that it belongs to any community, it should clearly be considered to belong 
to the community at the other end of that edge. Unfortunately, both the numbers of 
independent paths and the weighted path counts for such vertices are small and hence single 
nodes often remain isolated from the network when the communities are constructed. This 
and other pathologies, along with poor results from these methods in some networks where 
the community structure is well known from other studies, make the hierarchical clustering 
method, although useful, far from perfect. 
 
Edge ‘‘Betweenness’’ and Community Structure. To sidestep the shortcomings of the 
hierarchical clustering method, we here propose an alternative approach to the detection of 
communities. Instead of trying to construct a measure that tells us which edges are most 
central to communities, we focus instead on those edges that are least central, the edges that 
are most ‘‘between’’ communities. Rather than constructing communities by adding the 
strongest edges to an initially empty vertex set, we construct them by progressively 
removing edges from the original graph. Vertex betweenness has been studied in the past as 
a measure of the centrality and influence of nodes in networks.  
 
The betweenness centrality of a vertex i is defined as the number of shortest paths between 
pairs of other vertices that run through i. It is a measure of the influence of a node over the 
flow of information between other nodes, especially in cases where information flow over a 
network primarily follows the shortest available path. To find which edges in a network are 
most between other pairs of vertices, we generalize Freeman’s betweenness centrality to 
edges and define the edge betweenness of an edge as the number of shortest paths between 
pairs of vertices that run along it. If there is more than one shortest path between a pair of 
vertices, each path is given equal weight such that the total weight of all of the paths is unity. 
If a network contains communities or groups that are only loosely connected by a few 
intergroup edges, then all shortest paths between different communities must go along one 
of these few edges. Thus, the edges connecting communities will have high edge 
betweenness. By removing these edges, we separate groups from one another and so reveal 
the underlying community structure of the graph. 

 
The algorithm we propose for identifying communities is simply stated as follows: 

1. Calculate the betweenness for all edges in the network. 
2. Remove the edge with the highest betweenness. 
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3. Recalculate betweennesses for all edges affected by the removal. 
4. Repeat from step 2 until no edges remain. 

As a practical matter, we calculate the betweennesses by using the fast algorithm of 
Newman, which calculates betweenness for all m edges in a graph of n vertices in time 
O(mn). Because this calculation has to be repeated once for the removal of each edge, the 
entire algorithm runs in worst-case time O(m2n). However, after the removal of each edge, 
we only have to recalculate the betweennesses of those edges that were affected by the 
removal, which is at most only those in the same component as the removed edge. This 
means that running time may be better than worst-case for networks with strong community 
structure (those that rapidly break up into separate components after the first few iterations 
of the algorithm). 
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XV. Statistical Tests 
 

DATA SETS 

Categorical data (qualitative)   dichotomous (binary): e.g. presence/absence 

 nominal (no order): e.g. red/blue/green 

 ordinal (ordered): e.g. weak/medium/strong 

Quantitative data   counts (whole numbers): e.g. 1,2,3… 

 continuous (any value): e.g. 21.35, 23.67… 

 
 

SIGNIFICANCE  abbreviation  probability (p) values  percentage 

not significant  ns  p > 0.05  < 95% 

significant  *  0.01 < p < 0.05  95‐99% 

significant  **  0.001 < p < 0.01  99‐99.9% 

highly significant  ***  p < 0.001  >99.9% 

 
 

STATISTICAL TESTS 

NORMAL DISTRIBUTION  SKEWED DISTRIBUTION 

 

 
                  (tail skewed left)                       (tail skewed right) 

measures of spread: 

 mean (average) 

 standard deviation 

 95% confidence intervals 
[range = mean + 1.96 SD] 
[95% of observations clustered 
 within 1.96 SD of mean] 

measures of spread: 

 median (middle value) 

 interquartile range 
[25‐75% quartiles] 
[box‐whisker plots] 

Parametric statistical tests 

 t‐tests (one sample, paired sample, two 
sample) 
[compares means and variance] 

 analysis of variance (ANOVA) F‐value 
[compares variance within groups to 
variance between groups] 

Non‐parametric statistical tests 

 Wilcoxon Rank Sum test 
(= Mann‐Whitney U test) 
[compares sums of ranked data] 

 Kruskal‐Wallis test 
(= Kruskal‐Wallis one‐way ANOVA) 
[compares ranks] 
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Multivariate analyses 

 
 
 
 
 
                         dependent 
                         variable (y) 
                         [outcome] 

 
 
 
 
 
 
 

independent variable (x) 
[predictor] 

Regression analyses (for correlation) 

 linear regression 
[tests for correlation (+/‐) of single outcome with single predictor] 

 multiple regression (outcome variable(s) must be normally distributed) 
[tests for correlations of single outcome with multiple predictors] 

 logistic regression 
[special case where outcome variable is dichotomous] 

 
 

COMPARISON  Data normally distributed  Data not normally distributed 

sample group v. population  one‐sample t‐test  Wilcoxon’s Signed Rank test (1) 

matched pairs  
(categorical data) 

paired t‐test  Wilcoxon’s Signed Rank test (2) 

two populations  two means; 
   two‐sample t‐test* 

two medians; 
   Wilcoxon Rank Sum test 
two proportions 
   >5/cell: Chi‐squared test 
   <5/cell: Fischers exact test 

more than two populations  means; 
   ANOVA* 

medians; 
   Kruskal‐Wallis test 

predictor(s) v. continuous 
outcome 

linear regression 
multiple regression* 

GEE with transformation 

predictor v. dichotomous 
outcome 

logistic regression   

*all general linear models (GLM) 
 
 

Power and sample size 

Type I errors 
[accepting true when actually false] 
[= false positive] 
 

usually set α at 0.05 or 0.01 

Type II errors 
[accepting false when actually true] 
[= false negative] 
 

usually set β at 0.2 
 
giving power of study = (1-β) = 0.8 (80%) 
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Visual guide    
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XVI. r/K selection theory [reproduction-development trade-off (quantity versus quality)] 
 
The fitness of a species can be fundamentally enhanced by two different strategies: fast reproduction 
(multiplication, replication) or prolonged development (long-life, stability). These strategies are not 
independent, but form a continuum from one extreme to another for different species. How much one 
species invests in one strategy over the other depends on the selective environment, and in biology is 
called r-K selection. The mathematical principles are derived from logistic (constrained) growth model 
(Verhulst equation) of population biology which indicates the traits that favour either quantity or 
quality of offspring in a species (MacArthur & Wilson, 1967). That is, r-selected species invest in 
reproduction (quantity) while K-selected species invest in prolonged development and long-life 
(quality). 
   dN/dt   = N’     =    rN [1 – (N/K)] 

where   r  = growth rate   (reproduction) (quantitity) 
and   K = carrying capacity  (development) (quality) 

   N = population size 
   t  = time 
 

 
 
r-selected species K-selected species 
population grows exponentially (abundant 
resources) but never reaches carrying capacity 
(predators, droughts, etc) 

population approaching carrying capacity, slow 
growth due to competition for limited resources 

colonizers (opportunists) competitors 
unstable environments stable environments 
exploit less-crowded ecological niches, produce 
many offspring, each of which has a relatively 
low probability of surviving to adulthood 

strong competitors in crowded niches, invest 
heavily in fewer offspring, each of which has a 
relatively high probability of surviving to 
adulthood 

small organisms large organisms 
short-lived long-lived 
weak competitors strong competitors 
numerous offspring few offspring 
little parental care significant parental care 
fast maturation slow maturation 
rapid dispersal slow dispersal 
broad range territorial 
bacteria terns 
diatoms whales 
insects elephants 
weeds trees 
rodents humans 
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Topics to cover in Discussion 
 
ubiquity 

- occurrence 
- prevalence 
- intensity 
- abundance 

biodiversity 
- species richness 
- relative abundance 

host specificity 
- clusters 

species identification 
- morphotypic characters 
- novelty 

taxonomic characters 
- groupings (classification) 
- relationships (phylogeny) 

dietary specialization 
- flagellate diet 
- host diet 
- symbiotic bacteria 

distribution 
- spatial (geographic) 
- temporal (seasonal) 

 
want to analyse parasite population structure in: 

 one individual termite [infra-population]  
o qualitative (presence/absence) 
o quantitative (number = intensity) 

 ten individual termites of same species from one colony  
(inter-termite variation but intra-colony variation) 

o quantitative (prevalence) 
o quantitative (abundance) 

 termites of same species from different colonies 
(inter-colony variation) 

 termites of different species from different colonies 
(inter-species variation) 

o host specificity 
 
want to analyse parasite dynamics for correlations with: 

 host castes 
 host habitat (type of nest) 
 host diet 
 host phylogeny 
 host biogeography 

 
want to identify differences in morphology of flagellate species with respect to: 

- type of food (wood, starch….) 
- presence of hydrogenosomes 
- presence of symbiotic bacteria (ectosymbiotic, endosymbiotic cytoplasmic/nuclear) 
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Previous observations 
 
 
numbers of protozoa in lower termites:      workers  >  soldiers  >  alates 
 
 
trichomonads (do not contain wood particles) in drywood termites (eat sound wood) 
hypermastigids (contain wood particles) in subterranean termites (eat degrading wood) 
 
parabasalids (amitochondriate, with hydrogenosomes, few endosymbiotic bacteria) 
 
metamonads (amitochondriate, no hydrogenosomes, numerous symbiotic bacteria (ecto + endo) 
 
 hypermastigids trichomonads oxymonads 
rhinotermitids 
(degrading wood) 

+++ ++ + 

kalotermitids 
(sound wood) 

+ +++ + 

mastrotermitids    
termopsids    
higher termites 
(humus, grass, litter) 

   

    
hydrogenosomes numerous few none 
ectosymbiotic bacteria none none numerous 
endosymbiotic 
bacteria (cytoplasmic) 

many few many 

endosymbiotic 
bacteria (nuclear) 

numerous none none 

 
inverse relationship between presence of hydrogenosomes and symbiotic bacteria 
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XLSTAT (software for Excel)   
 
LIST OF TUTORIALS 
 
Statistical guides 

 Which statistical method should you choose and other learning resources 
 What is a statistical test? 
 Which statistical test should you use? 
 What is the difference between a two-tailed and a one-tailed test? 
 What is the difference between paired and independent samples tests? 
 What is the difference between a parametric and a nonparametric test? 
 What is statistical modeling? 
 Which statistical model should you choose? 
 Which multivariate data analysis method to choose? 
 Which descriptive statistics tool should you choose? 

Managing data 
 Aggregating data in Excel 
 Filtering observations in Excel 
 Stack / unstack data in Excel 
 Merging tables in Excel 
 Removing duplicates in Excel 

Preparing data 
 Coding and recoding data in Excel 
 Discretizing a continuous variable in Excel 
 Box-Cox transformation tutorial in Excel 
 Missing data imputation using NIPALS in Excel 
 Cross-tab or contingency table in Excel 
 Create a disjunctive table in Excel 
 Raking a survey sample, tutorial in Excel 
 Stratified data sampling tutorial in Excel 

Describing data 
 Mean, median, standard deviation & more in Excel 
 Skewness and Kurtosis in Excel 
 Frequencies, mode & bar charts in Excel 
 Distribution sampling & normality tests in Excel 
 Variables characterization tutorial in Excel 
 Quantiles or percentiles computation in Excel 
 Bootstrap statistics tutorial in Excel 
 Biserial correlations tutorial in Excel 
 Create an intelligent pivot table in Excel 
 Reliability analysis in Excel 

Visualizing data 
 Scatter plot tutorial in Excel 
 Scatter plot with confidence ellipses in Excel 
 Box plot tutorial in Excel 
 Notched box plots tutorial in Excel 
 Histograms and distribution fitting tutorial in Excel 
 Dynamic histograms tutorial in Excel 
 Parallel Coordinates Visualization in Excel tutorial 
 Ternary diagram in Excel tutorial 
 Chart with error bars in Excel with just two clicks 
 Motion charts tutorial in Excel 
 Adding a curve on an Excel chart 
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 Creating and customizing a plot 
 Customize a PCA chart for an easier interpretation 

Analyzing data 
 Principal component analysis (PCA) in Excel 
 Correspondence Analysis (CA) from a contingency table 
 Correspondence Analysis from raw data with 3D charts 
 Multiple Correspondence Analysis (MCA) in Excel 
 Principal Coordinate Analysis in Excel tutorial 
 Multidimensional Scaling (MDS) in Excel tutorial 
 Factor analysis in Excel tutorial 
 Discriminant Analysis in Excel tutorial 
 Agglomerative Hierarchical Clustering (AHC) in Excel 
 k-means clustering in Excel tutorial 
 Clustering big datasets using k-means then AHC 
 Gaussian mixture model clustering in Excel tutorial 
 Filtering observations and variables in PCA charts 
 Filtering observations within a PCA 

Modeling data 
 Fitting a distribution to a sample of data in Excel 
 Simple linear regression in Excel tutorial 
 Multiple Linear Regression in Excel tutorial 
 One-way ANOVA & multiple comparisons in Excel tutorial 
 Contrast analysis after a one-way ANOVA in Excel 
 Two-way unbalanced ANOVA with interactions in Excel 
 Pairwise multiple comparisons after a multi-way ANOVA 
 What is the difference between LS Means and Observed Means? 
 How to interpret contradictory results between ANOVA and multiple pairwise comparisons? 
 ANCOVA analysis in Excel tutorial 
 Running a logistic regression with XLSTAT 
 Ordinal logit model in Excel tutorial 
 Multinomial logit model in Excel tutorial 
 Log-linear regression (Poisson) in Excel tutorial 
 Quantile regression in Excel tutorial 
 Cubic spline in Excel tutorial 
 Nonparametric regression (kernel & Lowess) tutorial 
 Nonlinear regression in Excel tutorial 
 Nonlinear multiple regression in Excel tutorial 
 Partial Least Squares PLS regression in Excel 
 Partial least squares discriminant analysis PLSDA tutorial 
 Repeated measures ANOVA in Excel tutorial 
 Run repeated measures ANOVA using mixed models 
 Random components mixed model in Excel tutorial 
 Two-stage least squares regression 2SLS in Excel 

Machine Learning 
 Classification tree in Excel tutorial 
 Association rules for market basket analysis tutorial 
 K Nearest Neighbors KNN in Excel tutorial 
 Naive Bayes classification in Excel tutorial 
 Training a Support Vector Machine (SVM) in Excel 

Correlation/Association tests 
 Spearman correlation coefficient in Excel tutorial 
 RV coefficient test in Excel tutorial 
 Run Chi-square and Fisher’s exact tests in Excel 
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 Mantel test in Excel tutorial 
 Cochran-Armitage trend test in Excel tutorial 
 Pearson correlation coefficient in Excel 

Parametric tests 
 One proportion test in Excel tutorial 
 Compare two proportions in Excel tutorial 
 Compare k proportions in Excel tutorial 
 Multinomial goodness of fit test in Excel tutorial 
 One sample t-test or z-test in Excel tutorial 
 Student's t test on two independent samples tutorial 
 Student's t-test on two paired samples tutorial 
 One sample variance test in Excel tutorial 
 Fisher's F-test to compare two variances in Excel 
 Levene and Bartlett tests on variances in Excel 
 Compare ≥ 2 samples described by several variables 
 Testing equivalence with TOST in Excel tutorial 
 Two sample t-test using XLSTAT spreadsheet functions 

Non parametric tests 
 Mann-Whitney test in Excel tutorial 
 Wilcoxon signed rank test in Excel tutorial 
 Kruskal-Wallis test in Excel tutorial 
 Friedman non parametric test in Excel tutorial 
 Kolmogorov-Smirnov test in Excel tutorial 
 Page non parametric test in Excel tutorial 
 McNemar test in Excel tutorial 
 Cochran's Q test in Excel tutorial 
 Durbin, Skillings-Mack test in Excel tutorial 
 Cochran-Mantel-Haenszel CMH test in Excel tutorial 

Testing for outliers 
 Grubbs test to detect outliers in Excel tutorial 
 Dixon test to detect outliers in Excel tutorial 
 Cochran C test to detect outlying variances tutorial 
 Run Mandel’s h and k statistics to detect outliers 

Sensory data analysis 
 Preference Mapping in Excel tutorial 
 Semantic Differential Chart in Excel tutorial 
 Penalty analysis in Excel tutorial 
 Sensory product characterization in Excel tutorial 
 TURF analysis in Excel tutorial 
 Sensory panel analysis in Excel tutorial 
 Bradley-Terry model in Excel tutorial 
 Sensory shelf life analysis in Excel tutorial 
 Run sensory discrimination triangle test in Excel 
 CATA Check-All-That-Apply analysis tutorial in Excel 
 Design an experiment for sensory analysis in Excel 
 Multiple Factor Analysis (MFA) in Excel tutorial 
 Temporal Dominance of Sensations (TDS) in Excel 
 Sensory wheel tutorial in Excel 
 Time-Intensity analysis in Excel 

Conjoint analysis 
 Conjoint analysis in Excel tutorial 
 Choice Based Conjoint (CBC) in Excel tutorial 
 MaxDiff analysis in Excel tutorial 
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 Choice based conjoint analysis with Hierarchical Bayes (CBC HB) 
 Run Monotone regression / MONANOVA in Excel 
 Conditional logit model tutorial in Excel 

Time series analysis 
 Using differencing to obtain a stationary time series 
 Holt-Winters seasonal multiplicative model in Excel 
 Fit an ARIMA model to a time series in Excel 
 Spectral analysis in Excel tutorial 
 Mann-Kendall trend test in Excel tutorial 
 Time series homogeneity test in Excel tutorial 
 Cochrane-Orcutt estimation in Excel tutorial 
 Durbin-Watson test in Excel tutorial 
 Unit root (Dickey-Fuller) and stationarity tests on time series 
 Cointegration test on time series in Excel tutorial 

Monte Carlo simulations 
 Running a simple simulation model with XLSTAT 
 Simulation model with scenario variables tutorial 
 Run a simulation model with correlations between distributions and compute SPC (process 

ca... 
 Generating many distributions in a simulation model by copying 

Power analysis 
 Sample size & statistical power of a mean comparison test tutorial 
 Sample size & statistical power in a multiple regression tutorial 
 Sample size for a clinical trial tutorial in Excel 

Statistical Process Control 
 Individual control chart in Excel tutorial 
 Subgroup control chart in Excel tutorial 
 Attribute control chart in Excel tutorial 
 Pareto plot in Excel tutorial 
 Time weighted control chart in Excel tutorial 
 Gage R&R for quantitative data in Excel tutorial 
 Gage R&R for Attributes in Excel tutorial 

Design of Experiments 
 Factor effect (screening) design in Excel tutorial 
 Surface response design in Excel tutorial 
 Mixture design in Excel tutorial 

Survival analysis 
 Life table analysis in Excel tutorial 
 Kaplan-Meier survival analysis in Excel tutorial 
 Cox proportional hazards model in Excel tutorial 
 Sensitivity and specificity in Excel tutorial 
 ROC curve analysis in Excel tutorial 
 Nelson-Aalen analysis in Excel tutorial 
 Cumulative Incidence analysis in Excel tutorial 
 Weibull model in Excel tutorial 
 Parametric survival curves analysis in Excel tutorial 
 ROC curves comparison in Excel tutorial 

Method validation 
 Bland Altman plot to compare methods in Excel 
 Run Passing Bablok regression to compare methods 
 Run Deming regression to compare methods in Excel 

Dose effect analysis 
 Dose effect analysis in Excel tutorial 
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 Run 4 or 5-parameter logistic regression in Excel 
OMICS data analysis 

 Heat map (OMICS) in Excel tutorial 
 Differential expression (OMICS) in Excel tutorial 

Multiblock data analysis 
 Run Generalized Procrustes Analysis (GPA) in Excel 
 Canonical Correspondence Analysis (CCA) tutorial 
 Canonical Correlation analysis in Excel tutorial 
 Redundancy Analysis (RDA) in Excel tutorial 

PLS Path modeling 
 Create & run a basic PLS Path Modeling project 
 Create & run a basic PLSPM Project in Excel 2003 
 PLS Path Modeling in Excel: group comparison 
 PLS Path Modeling in Excel: REBUS classification 
 PLS Path Modeling in Excel: moderating effects 
 Consumer satisfaction analysis in Excel with PLSPM 

XLSTAT-LatentClass 
 Latent Class Regression Model in Excel tutorial 
 Latent Class Cluster Model in Excel tutorial 

XLSTAT-3DPlot 
 3D plot in Excel tutorial 
 Save a 3D model to reuse it later or on other data 

XLSTAT 365 
 Installing XLSTAT 365 
 Distribution sampling & normality tests in Excel 365 
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XLSTAT-Base (the simplest version with the following 100 programs) 
 
PREPARING DATA 
 Data sampling 
 Distribution Sampling 
 Discretization 
 Coding 
 Coding by ranks 
 Presence/Absence coding 
 Missing data 
 Complete disjunctive tables (Creating dummy variables) 
 Create contingency tables 
 Variable transformations 
 Data management 
 Raking survey data 
 
DESCRIBING DATA 
 Descriptive statistics (including Box plots and scattergrams) 
 Histograms 
 Reliability Analysis 
 Normality tests 
 Contingency table (descriptive statistics) 
 Similarity/Dissimilarity matrices (correlation…) 
 Multicollinearity statistics 
 Quantiles estimation 
 Resampled statistics 
 Biserial correlation 
 Variable characterization 
 Pivot table 
 
ANALYZING DATA 
 Principal Component Analysis (PCA) 
 Correspondence Analysis (CA) 
 Multiple Correspondence Analysis (MCA) 
 Principal Coordinate Analysis 
 Multidimensional Scaling (MDS) 
 Factor analysis 
 Discriminant Analysis (DA) 
 Agglomerative Hierarchical Clustering (AHC) 
 k-means clustering 
 Univariate clustering 
 Gaussian mixture models 
 
VISUALIZING DATA 
 Scatter plots 
 Histograms 
 Parallel coordinates plots 
 Ternary diagrams 
 Error bars 
 Semantic differential charts 
 Plot a function 
 Univariate plots 
 Plot management 
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 Motion charts 
 
MODELING DATA 
 Distribution fitting 
 Linear regression 
 ANOVA (Analysis of variance) 
 Welch and Brown-Forsythe one-way ANOVA 
 ANCOVA (Analysis of Covariance) 
 Multivariate Analysis of Variance (MANOVA) 
 Logistic regression (Binary, Ordinal, Multinomial, …) 
 Ordinal logit model 
 Log-linear regression (Poisson regression) 
 Quantile regression 
 Cubic splines 
 Nonparametric regression (Kernel and Lowess) 
 Nonlinear regression 
 Partial Least Squares regression (PLS) 
 PLS discriminant analysis 
 Repeated measures Analysis of Variance (ANOVA) 
 Mixed models 
 Ordinary Least Squares regression (OLS) 
 Principal Component Regression (PCR) 
 Two-stage least squares regression 
 
CORRELATION/ASSOCIATION TESTS 
 Tests on contingency tables 
 Correlation tests 
 Mantel test 
 Cochran-Armitage trend test 
 Biserial correlation 
 RV coefficient 
 
PARAMETRIC TESTS 
 Test for one proportion 
 Test for two proportions 
 k proportions test 
 Multinomial goodness of fit test 
 One-sample t-test and z-test 
 Two-sample t-test and z-test 
 One-sample variance test 
 Two-sample comparison of variances 
 k-sample comparison of variances 
 Multidimensional tests (Mahalanobis, …) 
 TOST (Equivalence test) 
 
NONPARAMETRIC TESTS 
 Non parametric tests on two independent samples 
 Non parametric tests on two paired samples 
 Kruskal-Wallis test 
 Friedman test 
 Page test 
 McNemar's test 
 Cochran's Q test 
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 Durbin and Skillings-Mack tests 
 Cochran-Mantel-Haenszel test 
 One sample runs test 
 Mood test (Median test) 
 
TOOLS 
 Export to GIF/JPG/PNG/TIFF 
 Manage data (DataFlagger, MinMaxSearch, Remove text values in a selection) 
 Manage workbook (Sheets management, Delete hidden sheets, Show hidden sheets) 
 Manage the menu bars (Display the main bar, Hide the sub-bars) 
 
TESTING FOR OUTLIERS 
 Grubbs' test for outliers 
 Dixon test for outliers 
 Cochran C test for outlying variances 
 Mandel’s h and k statistics for outliers 
 
MACHINE LEARNING 
 Classification and regression trees 
 Association rules 
 K Nearest Neighbors (KNN) 
 Naive Bayes classifier 
 Support Vector Machine 
 k-means clustering 
 Gaussian mixture models 
 
 
 


