

Energy

defined as the ability to do work

- potential energy (stored)
- kinetic energy (of motion)
- thermal energy (heat)

chemical energy (stored in bonds between atoms)
nuclear energy (bound within nucleus of atom)
electromagnetic energy (electricity, magnetism, light, X-rays, microwaves, radio waves, etc)

2

3

UNITS				
ENERGY	kWh	amount		
POWER	kWh/d	rate		
Look at units for power! Can you spot an inconsistency?				
h/d = time / time cancel out giving actual units for power as kW				

POWER (kW = kWh/d)
Does it make sense in terms of SI units?
FORCE: Newton's second law of motion Force (newtons) = mass (kg) x acceleration (m s ⁻²) [1 kg m s ⁻² = 1 N]
WORK: application of energy over distance Work, energy (joules) = force (N) x distance (m) [1 N m = 1 J]
POWER: rate of energy usage Power (watts) = work, energy (J) / time (s) [1 J s ⁻¹ = 1 W]
[Algebraic reshuffle 1 J s ⁻¹ = 1 W = 1 J = 1 W s]
Energy is a quantity (measured in kWh) [1kWh = 3.6 million J]
Power is a rate (measured in kW or kWh/d) [1 kW = 24 kWh/d] [40W = 1 kWh/d]

8

10

World CO ₂ emissions				
Burning fossil fuels dum	ps ~ 30 GtCO ₂ e/y	y into atmosphere		
Small compared to:	440 GtCO ₂ e/y fr 330 GtCO ₂ e/y fr	om biosphere om oceans		
BUT, biosphere extracts oceans extract	440 GtCO ₂ e/y 330 GtCO ₂ e/y	harmonious balance through evolution		
Problem is that extracted	ktra amount add I, utilized, seque	ed by humans stered, etc.		
THUS, it is	s a cumulative pr	oblem		

Check units Kinetic Energy: $KE = \frac{1}{2} m v^2$ [= kg (m s⁻¹)²] [= kg m² s⁻²] Potential Energy: PE = mgh [= kg m s⁻² m] [= kg m² s⁻²] Energy: $E = m c^2$ [= kg (m s⁻¹)²] [= kg m² s⁻²] [= N m] [= J] [= W s] [= kWh] [= kW] [= kWh/d] P = E/tPower:

9

Greenhouse gas production (per capita)

Power consumption (Oz)

TOTAL 190 kWh/d per person

Cars	
Planes	
Household	
Lighting	
Gadjets	
Food/farming	
Manufacturing	
Public services	

19

20

21

Power consumption: household E_{hot-water} = heat capacity x volume x temperature difference E_{shower} = 4200 J/L/°C x 30 L x (50-10)°C = 5 MJ (=1.4 kWh) Power used for one 5 minute shower per day = 1.4/12 = 0.1 kWh/d] Energy used by electric kettle per day = power x time used per day = 3 kW x 0.5 h/d = 1.5 kWh/d Cooking (stove, oven, microwave, kettle) (~3kW appliances) = 5 kWh/d Cooling (refrigerator, freezer) (0.1 kW) = 2 kWh/d Air-conditioning (heating/cooling) (1 kW) = 24 kWh/d

22

Power consumption: gadjets Appliance with power rating of 40 W = 1 kWh/d but only used for fraction of each day Power quantity rating sum usage (no.) x (W) (kW) x (h/d) = (kWh/d) Computer/printer 2 100 02 4 0.8 TV/DVD/VCR 2 100 0.2 0.6 3 Xbox/PS/Wii 2 200 0.4 0.8 CD/stereo/radio 100 0.2 0.4 2 2 Chargers (phone,...) 4 0.02 24 0.5 Vacuum cleaner 1600 1.6 1.6 0.3 Lawn mower TOTAL = 5 kWh/d

Power consumption: food/farming

Item	Consumption – Production	Power
milk, cheese	consume 0.75 L/d, 450 kg cow produces 16 L/d,	
	uses 450 x 3/65 kWh/d (0.75/16 x 450 x 3/65)	1 kWh/d
eggs	eat 2 eggs/d, chicken lays 290 eggs/yr, eat	
	120 g/d @ 3.3 kWh/kg (2 x 365/290 x 0.12 x 3.3)	1 kWh/d
meat	eat 100 g/d each of chicken, beef and pork,	
	(50, 1000 & 400 days nurture @ 3/65 kWh/d/kg)	7 kWh/d
fruit/vegies	eat 250 g/d, 200 days nurture @ 3/130 kWh/d/kg	1 kWh/d
pets	cats, dogs and horses, 1 per 10 persons	3 kWh/d
TOTAL		13 kWh/d

25

26

	kWh/d per person
Cars	40
Planes	27
Household	36
Lighting	5
Gadjets	5
Food/farming	13
Manufacturing	60
Public services	4
OTAL	190

28

What can we do about energy consumption?

Use less!

 mandates profound life-style changes (sell car, do not fly, limit gadjets, reduce lighting, make household more efficient, eat less, buy less..)

Should your generation expect less than what your parents have?

Power production *

Power production: fossil fuels Fossil fuels (coal, gas, oil) Current global consumption 6.3 Gt/yr Known reserves (mostly coal) = 1,600 Gt

To be sustainable, needs to last 1,000 years Allows annual consumption = 1.6 Gt/yr Divided by 6 billion people, gives ~6 kWh/d per person

Standard coal power stations only 37% efficient Technology for clean coal (carbon capture and storage) unavailable

Only enough coal left for 250 years (if no population growth) or 60 years (with 3.4% population growth)

32

31

Turbines size-constrained, spaced for clear air, generate 2 W/m² But: only 10% efficient, only work in moderate wind speeds, so only ~1% land in Australia suitable

Power/person = [efficiency] x wind power/unit area x area/person

- = [10% x 1%] x 2 W/m² x 384,000 m²/person
- = 768 W per person
- ~ 20 kWh/d per person

33

Power production: wind

Wind (offshore) (deep, 25-50 m)

Platforms more expensive, generate 3 W/m² Turbine problems with corrosion, still only 10% efficient Suitable coastal area ~ 320,000 km² but only 25% available (fishing, shipping, reefs, ..)

Power/person = [efficiency] x wind power/unit area x area/person

- = [10% x 25%] x 3 W/m² x 16,000 m²/person
- = 1200 W per person
- ~ 30 kWh/d per person

Power production: wind

Turbine problems with corrosion, still only 10% efficient Shallow inshore area ~ 160,000 km² But only 25% available (fishing, shipping, reefs, ..)

Power/person = [efficiency] x wind power/unit area x area/person

- = [10% x 25%] x 3 W/m² x 8,000 m²/person
- = 600 W per person
- ~ 15 kWh/d per person

34

Power production: solar

Sunshine (midday, cloudless day, at Equator) = 1000 W/m²

But compensate for : latitude (tilt) daily variation cloud cover Oz ~70% that of Equator average ~ 40% midday sun shines ~ 35% of day

Yields average solar power per area = 100 W/m²

Solar power

- Thermal (heat water)
- Photovoltaic (produce electricity)
- Biomass (grow plants to eat or for biofuel)

Power production: solar

Solar (thermal)

Simplest technology – panel to heat water, 50% efficient Average solar power = 100 W/m² Assume everyone gets 10m² panels on roof

Solar heating = efficiency x area panels/person x average power $= 50\% \ x \ 10 \ m^2 \ x \ 100 \ W/m^2$

- = 500 W
- = 12 kWh/d per person

37

39

38

	Autoria.
nyuroelec	tricity
Need a	ititude and raintali to narvest gravitational power
(potent	al energy) of water
Most ra	in runs off, is used by plants or evaporates
(only ~	10% could be used for hydroelectricity)
PE _{grav}	= m g h = (volume x density) g h = (rainfall x density) x gravity x altitude
	[Density of water = 1,000 kg/m ³ , Gravity = 10 m/s ²]
Lowlands	altitude < 500 m (with 100 m drop)
Highlands	altitude > 1,000 m (with 300 m drop)

Power production: hydroelectricityHydroelectricity (highlands)Area Australia = 7.68 million km², but only 0.5% is > 1,000 m highAssume that is all has a suitable altitude drop of 300 mAverage rainfall ~ 800 mm/yr and assume it all sees a turbinePower per unit area= 800 mm/yr x 1000 kg/m³ x 10 m/s² x 300 m= 0.8 m/yr x 3,000,000 kg.m².s²= 0.8 (/365x24x60x60) m/s x 3 x 10° kg.m².s²= 0.06 kg.s³[1 W = 1 kg.m².s³]= 0.06 W/m²Multiply by area/person (1,900 m² per person for lowlands)= 114 W[40 W = 1 kWh/d]= 3 kWh/d per person

Power production: wave

Wave (sun makes wind makes waves, when wind > 0.5 m/s)

Wave energy collectors

(floating articulated snakes perpendicular to wave direction) (flexion around articulation generates energy, but only 25% efficient) (power of waves measured at 40 kW/m of exposed coastline) Australian coastline 20,000 km (but only 2% with sustained oceanic waves)

Wave power = efficiency x power/length coastline x length per person = 25% x 40 kW/m x 0.02 m per person

- = 200 W [40 W = 1 kWh/d]
- = 5 kWh/d per person

43

45

Power production (Oz)				
SOURCE		kWh/d per person		
Fossil fuels	coal, gas, oil	6		
Wind	onshore	20		
	offshore shallow	15		
	offshore deep	30		
Solar	thermal	12		
	photovoltaic	5		
	biomass	33		
Hydroelectricity	lowland	8		
	highland	3		
Wave		5		
Tide		15		
Geothermal		2		
TOTAL		154		

Power production: tide

Two tides per day (6.25 hr period), predictable, regular, everlasting

Tide range of 4 m (current of 2 knots, ~1 m/s) may generate 3 W/m²

Australian coastline 20,000 km, tidal currents up to 1 km offshore,

Tidal power = efficiency x power per unit area x area per person

[40 W = 1 kWh/d]

= 50% x 3 W/m² x 400 m²/person

Tide (gravitational interaction between Earth and Moon)

Tide turbines cheap, hidden underwater, 50% efficient

= 15 kWh/d per person

(establish tidal pools/lagoons, tidal stream farms, barrages)

Use water flowing back and forth to turn turbine

Assume only 40% accessible/suitable

= 600 W

46

BIG BANG

Theory of Everything (Universal Theory)

- electromagnetic force (wave/particle)
- gravitational force (attraction)
- strong force (overcome repulsion)
- weak force (radio-active decay)

Power production: nuclear energy

Nuclear ener	gy (fission, using hea (fusion, using ligh	using heavy elements, uranium) using light elements, deuterium, DT/DD)		
Energy availa	ble per atom is 1,000,000 x	greater than chemical energy		
Fossil fuels Uranium	16 kg/d consumed pp 2 g/d consumed pp	produces 30 Kg CO ₂ /d produces 0.25 g waste		
Source of radioactive elements - ground (estimated reserves 27 million tons uranium) - ocean (estimated reserves 4.5 billion tons uranium)				
Usage - once-throu - fast-breed	ugh reactor (energy from ²³ er reactor (energy from ²³⁸	⁵U (discard ²³⁸ U) J), 60x more efficient		

50

49

FISSION

Fission = splitting atom (using a neutron) only Uranium and Plutonium generate self-sustaining reactions Plutonium not found naturally (formed when U-238 absorbs a neutron to become U-239 which then decays in days to Pl-239)

Uranium found naturally in earth (foci) and seawater (3.4 ppb) Occurs as three isotopes: U-244, U-235, U-238

U-238 is most abundant but cannot sustain a reaction

U-235 makes up 0.7% of natural deposits

reactors use enriched (boosted) blend so U-235 is 3.5-5.0%

made into pellets and then put in long fuel rods

use gas centrifuges for enrichment (can be used for weapons)

light water reactor (core -> water -> turbine)

fast breeder reactor (core -> liquid salt/metal -> water -> turbine) Thorium reactors (Th-232 + n -> Th-233 which decays to U-233)

51

FISSION								
440 reactors in the world provided 13% of energy in 2011	Figure thoriu (in gri arrou	. Chart shou im series iso een). Alpha c is (↓) and bi	ving the topes an lecays a eta deca	decay cl id the ha re showi ys by th	hain of t alf-lives n by the e diagon	he urani of each vertical al arrou	ium and isotope is (🥂).	
	Atomic Number	Element		U-	235 Seri	es		
135 defunct reactors	92	Uranium	U-235 7.04 x 10 ⁸					
only 17 dismantled	91	Protactinium	Ĵ	Pa-231				
	98	Thorium	Th-231	Î 🗍	Th-227			
disasters	89	Actinium		Rc-227	Ĩ↓ I			
Chernobyl 1986 Ukraine	88	Radium			Ra-223			
Fukushima 2011 Japan	87	Francium			↓ I			
	86	Radon			8n-219 3.96 sec			
rangerous radiation	85	Astatine			↓ I			
vaste products	84	Polonium			Po-215 1.78 x 10 ³ sec		Po-211 0.516 7 sec	
ong han-lives	83	Bismuth			↓ I	BI-211 2.15 min	V	
	82	Lead			Pb-211 36.1 min		Pb-207 stable lead (isotope)	

52

FISSION

energy generation in nuclear reactor

- use 2-4% uranium-235 (concentration too low for explosion)
- generates enormous amount of heat (need coolant to avoid melt-down)
 - (use heat to drive steam turbines to produce electricity)
- once-through reactors v. fast-breeder reactors (60-fold difference in efficiency)
- all plagued with problems of radio-active waste $(half\text{-lives } 10^3 10^9 \, years)$

+ \overline{V}_{e} (anti-neutrino)
[extremely penetrating]
+ <i>V</i> _e (neutrino)
con \rightarrow neutron + $V_{\rm e}$ + X-rays

Power production: nuclear energy						
Nuclear energy (fission, fusion) Estimated power production in kWh/d per person						
FISSION	mined Uranium	ocean Uranium	mined Thorium			
Once-through	0.55	7	4			
Fast breeder	33	420	24			
FUSION	mined Lithium	ocean Lithium	ocean Deuterium			
Fantasy reactor	10	105	30,000			

