

2

MOTION

- Concept of change
- Motion = change in position over time
- Kinematics (mathematical description)
- Dynamics (explanation)
- Key ideas:
 - cause (force)
 - effect (acceleration)
- Classical mechanics (Newton's Laws)
- Quantum mechanics (subatomic)

3

$$\begin{array}{ll} \cdot & \text{change in position = displacement} \\ & \Delta s \ = \ s_f - s_i \quad \text{where } f \ = \ \text{final}, i \ = \ \text{initial} \end{array} \begin{array}{l} (m) \\ \cdot & \text{change in time: } \Delta t \\ \cdot & \text{change in position over time = velocity} \\ & v \ = \ \Delta s \ / \ \Delta t \end{array} \begin{array}{l} (m/s) \end{array}$$

• change in velocity over time = acceleration a = $\Delta v / \Delta t$ (m/s²)

4

Position		
new position $x = x_0 + \Delta x$	[but ∆x = v _{av.} t]	
so $x = x_0 + v_{av.}t$	[but $v_{av.} = \frac{1}{2} (v_0 + v)$]	
so $x = x_0 + \frac{1}{2} (v_0 + v).t$	$[but v = v_0 + a.t]$	
so $x = x_0 + \frac{1}{2} (v_0 + v_0 + a.t).t$		
= $x_0 + v_0 t + \frac{1}{2} a t^2$	[which is quadratic eqn]	
3		

Anatomy of eqn. $\mathbf{x} = \mathbf{x}_0 + \mathbf{v}_0 \mathbf{t} + \frac{1}{2} \mathbf{a} \mathbf{t}^2$ position $\mathbf{y}_a \mathbf{t}^2$ $\mathbf{y}_b \mathbf{t}$ $\mathbf{y}_b \mathbf{t}$ $\mathbf{y}_b \mathbf{t}$ $\mathbf{y}_b \mathbf{t}$ $\mathbf{y}_b \mathbf{t}$ $\mathbf{y}_b \mathbf{t}$ \mathbf{t} $\mathbf{y}_b \mathbf{t}$ \mathbf{t} $\mathbf{y}_b \mathbf{t}$ \mathbf{t} \mathbf{t}

Let's play ball!

- A ball is thrown vertically into the air at time t = 0 s from a height of 2 m above the ground with an initial velocity of 20 m/s. The acceleration due to gravity at that location is 9.8 m/s². Ignore any air resistance.
- 1. Draw a motion/particle diagram of the ball's trajectory.
- 2. What is the velocity of ball at any time t?
- 3. What is the displacement of ball at any time t?
- 4. What is the maximum height the ball reaches?
- 5. When does the ball hit the ground?

19

Let's play ball!

maximum height at apex when v = 0

4. What is the maximum height the ball reaches?

v(t) = -9.8t + 20 = 0

t = 2.04 secs

 $s(t) = -4.9t^2 + 20t + 2$

= 22.4 m

 $s(2.04) = (-4.9 \times 2.04^2) + (20 \times 2.04) + 2$

9.8t = 20

21

Let's play ball! 1. Motion/particle diagram of trajectory $v_{1} = 20 \text{ m/s}$ $s_{0} = 2 \text{ m}$ ground

20

22

Let's play ball!

5. When does the ball hit the ground?

reach ground when s = 0

 $s(t) = -4.9t^2 + 20t + 2 = 0$

solve for t using quadratic soln x = (-b $\pm \sqrt{b^2 - 4ac}$) / 2a

 $t = (-20 \pm \sqrt{20^2 - (4 \times -4.9 \times 2)}) / (2 \times -4.9)$ = 4.179 secs

24

Examples			
Differentiation		Integration	
Function/relationship	symbols	Function/relationship	symbol
displacement, <i>s(t)</i> → velocity, <i>v(t)</i>	v(t) = ds/dt	velocity, <i>v(t)</i> → displacement, <i>s(t)</i>	s = ∫v(t)dt
velocity, <i>v(t)</i> → acceleration, <i>a(t)</i>	a(t) = dv/dt	acceleration, <i>a(t)</i> → velocity, <i>v(t)</i>	v = ∫a(t)dt
mass, <i>m(x)</i> → density, <i>ρ(x)</i>	ρ (x) = dm/dx	density, <i>ρ(x) →</i> mass, <i>m(x)</i>	m = .[p(x)dx
population, <i>P(t)</i> → growth, <i>r(t)</i>	r(t) = dP/dt	growth, <i>r(t)</i> → population, <i>P(t)</i>	P= = ∫r(t)dt