

1

MOTION

- Concept of change
- Motion = change in position over time
- Kinematics (mathematical description)
- Dynamics (explanation)
- Key ideas:
- cause (force)
- effect (acceleration)
- Classical mechanics (Newton's Laws)
- Quantum mechanics (subatomic)

3

5

PHYSICS

study of the physical universe
(motion, energy, time, space)
(macro- to micro-cosmos)

2

4

6

9

Kinematics (motion)

Galilean kinematics based on geometric logic

Newtonian kinematics includes calculus

- rates of change (differentiation)
- areas under curve (integration)

Real exemplar

A plane has to make an emergency landing at a small airport with a 900 m runway. The plane touches down at a speed of $80 \mathrm{~m} / \mathrm{s}$ and then deccelerates at $4 \mathrm{~m} / \mathrm{s}^{2}$.
Will the runway be long enough?

Given data:

touchdown: $\mathrm{t}=0 ; \mathrm{x}_{0}=0 ; \mathrm{v}_{0}=80 \mathrm{~m} / \mathrm{s} ; a=-4 \mathrm{~m} / \mathrm{s}^{2}$

1. Time until $v=0$?

$$
v=v_{0}+a . t=0 \quad t=-v_{0} / a=-80 /-4=20 \mathrm{sec}
$$

2. How far in 20 sec?
$x=x_{0}+v_{0} . t+1 / 2 a t^{2}=0+(80 \times 20)+1 / 2(-4 \times 20 \times 20)=800 \mathrm{~m}$

SAFE LANDING!

10

Newton (1642-1727)

developed fundamental Laws of Motion

1. INERTIA: an object in motion will remain in motion, and an object at rest will stay at rest, unless acted upon by an external force
2. ACCELERATION: acceleration of an object is directly proportional to the force applied,
and inversely proportional to its mass
3. REACTION: for every action,
there is an equal and opposite reaction

12

13

15

17

INTEGRATION

If function $f(x)=x^{n}$
then integral $F(x)=1 /(n+1) x^{n+1}+C$

$$
\text { e.g. } f(x)=3 x^{2}+6 x+2
$$

$$
F(x)=x^{3}+3 x^{2}+2 x+C
$$

$f(x)=2 e^{x}$
$F(x)=2 e^{x}+C$
$f(x)=0.02 e^{0.02 x}$
$F(x)=e^{0.02 x}+C$
$f(x)=2 e^{0.02 x}$

$$
F(x)=100 e^{0.02 x}+C
$$

$$
\text { Note: } \quad F^{\prime}(x)=f(x)
$$

18

Let's play ball!

A ball is thrown vertically into the air at time $t=0 \mathrm{~s}$ from a height of 2 m above the ground with an initial velocity of $20 \mathrm{~m} / \mathrm{s}$. The acceleration due to gravity at that location is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Ignore any air resistance.

1. Draw a motion/particle diagram of the ball's trajectory.
2. What is the velocity of ball at any time t?
3. What is the displacement of ball at any time t?
4. What is the maximum height the ball reaches?
5. When does the ball hit the ground?

Let's play ball!

2. What is the velocity of ball at any time t?

$$
\begin{aligned}
v & =\int a \\
v(t) & =\int a . d t \\
& =\int-9.8 . d t \\
& =-9.8 t+C \\
v(0) & =20=(-9.8 \times 0)+C, \text { so } C=20 \\
\text { giving } v(t) & =-9.8 t+20
\end{aligned}
$$

21

Let's play ball!

4. What is the maximum height the ball reaches?

$$
\begin{aligned}
& \text { maximum height at apex when } v=0 \\
& v(t)=-9.8 t+20=0 \\
& 9.8 t=20 \\
& t=2.04 \text { secs } \\
& s(t)=-4.9 t^{2}+20 t+2 \\
& s(2.04)=\left(-4.9 \times 2.04^{2}\right)+(20 \times 2.04)+2 \\
&=22.4 \mathrm{~m}
\end{aligned}
$$

Let's play ball!

1. Motion/particle diagram of trajectory

20

Let's play ball!

3. What is the displacement of ball at any time t?

$$
\begin{aligned}
s & =\int v \\
s(t) & =\int v \cdot d t \\
& =\int(-9.8 t+20) \cdot d t \\
& =(-9.8 / 2) t^{2}+20 t+C \\
& =-4.9 t^{2}+20 t+C
\end{aligned}
$$

$$
s(0)=2=\left(-4.9 \times 0^{2}\right)+(20 \times 0)+C, \text { so } C=2
$$

$$
\text { giving } s(t)=-4.9 t^{2}+20 t+2
$$

22

24

Examples			
Differentiation		Integration	
Function/relationship	symbols	Function/relationship	symbol
displacement, $s(t)$ \rightarrow velocity, $v(t)$	$v(t)=d s / d t$	$\begin{gathered} \text { velocity, } v(t) \\ \rightarrow \text { displacement, } s(t) \end{gathered}$	$s=\int v(t) d t$
$\begin{gathered} \text { velocity, } v(t) \\ \rightarrow \text { acceleration, } a(t) \end{gathered}$	$a(t)=d v / d t$	acceleration, $a(t)$ \rightarrow velocity, $v(t)$	$v=\int a(t) d t$
$\underset{\rightarrow \text { density, } \rho(x)}{\text { mass, } m(x)}$	$\rho(x)=d m / d x$	$\begin{gathered} \text { density, } \rho(x) \rightarrow \\ \text { mass, } m(x) \end{gathered}$	$m=\int \rho(x) d x$
population, $P(t)$ \rightarrow growth, $r(t)$	$r(t)=d P / d t$	growth, $r(t)$ \rightarrow population, $P(t)$	$P==\int r(t) d t$

25

