SCIENCE Rocket science (HyShot) Differenti • positio • velocit • accele Average velocit Instantan

Study of motion

1

3

4

2

Powered Flight

Propeller engines (< Mach 1)

- petrol engines turn propeller blades

Jet engines (air breathers)

- Turbojets (Mach 3)
- high speed turbine
- Afterburners and Ramjets (Mach 3-5)
- but still subsonic air flow for mixing and combustion Scramjet (Mach 5-20)
- supersonic air flow for mixing and combustion

Rockets (Mach 30+)

• fuel and oxidizing agents carried on board

7

9

Typical scramjet flight

- A scramjet engine is attached to a two-stage rocket and fired to a great height.
- After reaching the peak of its trajectory, gravity accelerates the scramjet back towards Earth. When it reaches a certain high velocity, the
- scramjet engine fires and the test is conducted. The engine finally crashes back to Earth.

8

www.youtube.com/watch?v=nwikJ4wcSEc

10

Flight log

Time (s)	Action
0	Ignition of stage 1 rocket
0-6	Rocket accelerates at rate equivalent to 22 times that of gravity
6-15	Rocket coasts until ignition of stage 2
15-41	Stage 2 accelerates rocket to 8,300 km/hr
46	Nose cone (with scramjet) separates and continues upwards
46-446	Nose cone continues upwards while reorienting itself for re-entry into atmosphere. Maximum height achieved is 330 km.
446- impact	Nose cone descends using gravity to accelerate it to scramjet ignition velocity, which occurs 35 km above ground. Once scramjet ignites, it burns until it reaches height of 23 km. Scramjet then shuts off and free-falls to Earth

Scramjet

- 1. Draw a motion/particle diagram.
- 2. What is the velocity of the rocket when stage 1 stopped firing at t = 6 sec?
- 3. Find an expression for the height of the rocket at any time after reaching the maximum height.
- At what velocity is the scramjet travelling when it fires? 4.
- 5. What factors have been overlooked in the previous calculations (leading to overestimation of the velocity)?

All perfectly reasonable questions requiring answers

13

15

Scramjet

16

Scramjet

5. What factors have been overlooked in the previous calculations (leading to overestimation of the velocity)?

- ignored drag (wind resistance)
- change in mass (used fuel)
- change in g with height [g at 330 km = -8.86 m/s²)

Newton (1642-1727)

developed fundamental Laws of Motion

1. <u>INERTIA</u>: an object in motion will remain in motion, and an object at rest will stay at rest, unless acted upon by an external force [momentum = mass x velocity]

2. <u>ACCELERATION</u>: acceleration of an object is directly proportional to the force applied, and inversely proportional to its mass

[force = mass x acceleration]

there is an equal and opposite reaction

3. **<u>REACTION</u>**: for every action,

[e.g. gravity]

19

20

21

Accounting for variable g forces

9. Calculate average acceleration due to gravity at heights 330 km and 35 km, and use that to calculate the velocity of the scramjet at ignition.

at r = 330 km, a = -8.86 m/s² at r = 35 km, a = -9.69 m/s² so average a = [-8.86 + (-9.69)] / 2 = -9.28 m/s²

```
thus Q.3 becomes s(t) = -9.28/2 t^2 + 330,000
= -4.64 t<sup>2</sup> + 330,000
```

when s = 35,000; t = 252 sec

and Q.4 becomes v(t) = -9.28 t when t = 252; v = -2,338.6 m/s (~ Mach 6.9)

25

27

Accounting for variable g forces

BUT there is still a source of error!		
We have assumed that acceleration due to gravity changed at a constant (average) rate during descent.		
Actually, acceleration changes at a different rate		
during descent (changes according to the square		
of the distance from the centre of the Earth).		
Jsing integration, the Gravitational law, and the chain rule for integrating as a function of time and displacement, we get:		
$v(r) = -\sqrt{2GM_e [(1 / (r+R_e)) - (1 / (H+R_e))]}$		
where v(r) = velocity of scramjet at height r,		
and H = initial (highest) height		

26

28