

1

Speed of Sound

Sound waves travel $340 \mathrm{~m} / \mathrm{s}$ at sea level

3

Speed of Sound

$340 \mathrm{~m} / \mathrm{s}$ at sea level (= Mach 1)
subsonic (< Mach 1)
sonic boom (break sound 'barrier')
supersonic
(> Mach 1, but < Mach 5)
(> Mach 5)

5

2

4

Speed of sound

```
convert units from m/s to km/hr for
    Mach 1
    Mach 3
    Mach 5
    Mach 20
    Mach 30
Mach 1 = 340 m/s \times(1 km / 1,000 m) \times((60\times60 s)/1hr)
    = 1,224 km/hr
Mach 3 =1,224 x 3 = 3,672 km/hr
Mach 5 = 1,224\times5 = 6,120 km/hr
Mach 20=1,224\times20=24,480 km/hr
Mach 30=1,224 x 30=36,720 km/hr
```

6

Powered Flight

Propeller engines (<Mach 1)

- petrol engines turn propeller blades

Jet engines (air breathers)

- Turbojets (Mach 3) high speed turbine
- Afterburners and Ramjets (Mach 3-5) but still subsonic air flow for mixing and combustion
- Scramjet (Mach 5-20) supersonic air flow for mixing and combustion

Rockets (Mach 30+)

- fuel and oxidizing agents carried on board

UQ HyShot

Rockets are primarily affected by:

- THRUST (from engines)
- GRAVITY (from celestial bodies)
- DRAG (when moving through atmosphere)
- LIFT (aerodynamics)

9

Typical scramjet flight

A scramjet engine is attached to a two-stage rocket and fired to a great height.
After reaching the peak of its trajectory, gravity accelerates the scramjet back towards Earth.
When it reaches a certain high velocity, the scramjet engine fires and the test is conducted.
The engine finally crashes back to Earth.

Scramjet

Supersonic Combustion ramjet
essentially, no moving parts

- constricted tube to compress inlet air
- combustion chamber to burn added fuel
- nozzle for exhaust jet
(leaves at higher speed than inlet air)

8

10

12

Scramjet

1. Draw a motion/particle diagram.

2. What is the velocity of the rocket when stage 1 stopped firing at $\mathrm{t}=6 \mathrm{sec}$?
3. Find an expression for the height of the rocket at any time after reaching the maximum height.
4. At what velocity is the scramjet travelling when it fires?
5. What factors have been overlooked in the previous calculations (leading to overestimation of the velocity)?

All perfectly reasonable questions requiring answers

13

Scramjet

2. What is the velocity of the rocket when stage 1 stopped firing at $\mathrm{t}=6 \mathrm{sec}$?

$$
\begin{aligned}
& v=\int \mathrm{a} \\
& \mathrm{v}(\mathrm{t})=\int \mathrm{a} \cdot \mathrm{dt} \\
&=\int 22 \mathrm{~g} \cdot \mathrm{dt} \\
&=22 \mathrm{gt}+\mathrm{C} \\
& \mathrm{v}(0)=0=(22 \mathrm{~g} \times 0)+\mathrm{C}, \text { so } \mathrm{C}=0 \\
& \text { giving } \mathrm{v}(\mathrm{t})=22 \mathrm{gt} \\
& \mathrm{~V}(6)=22 \times 9.8 \times 6 \\
&=1,293.6 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

15

Scramjet

4. At what velocity is the scramjet travelling when it fires?

$$
\begin{aligned}
& \text { Fires at } 35 \mathrm{~km}=35,000 \mathrm{~m} \\
& \text { so } 35,000=-4.9 \mathrm{t}^{2}+330,000 \\
& \mathrm{t}^{2}
\end{aligned}=60,204 \mathrm{t}=245 \mathrm{~s}, ~ \begin{aligned}
\mathrm{v}(\mathrm{t}) & =-9.8 \mathrm{t} \\
\mathrm{~V}(245) & =-9.8 \times 245 \\
& =-2,401 \mathrm{~m} / \mathrm{s} \\
& =\text { Mach } 7.1 \quad(\text { Mach } 1=340 \mathrm{~m} / \mathrm{s})
\end{aligned}
$$

Scramjet

1. Motion/particle diagram of trajectory

14

Scramjet

3. Find an expression for the height of the rocket at any time after reaching the maximum height.

$$
\begin{aligned}
& \begin{aligned}
v=\int a=\int-g . d t & =-g t+C \quad v(0)=0, s o C=0 \\
& =-g t
\end{aligned} \\
& \begin{aligned}
s=\int v=\int-g t . d t & =\int-9.8 t . d t \\
& =-4.9 t^{2}+C
\end{aligned} \\
& \begin{aligned}
s(0)=330,000, \text { so } C=330,000
\end{aligned} \\
& \text { giving } s(t)=-4.9 t^{2}+330,000 \mathrm{~m}
\end{aligned}
$$

16

18

Newton (1642-1727)

developed fundamental Laws of Motion

1. INERTIA: an object in motion will remain in motion, and an object at rest will stay at rest, unless acted upon by an external force
[momentum = mass x velocity]
2. ACCELERATION: acceleration of an object is directly proportional to the force applied,
and inversely proportional to its mass
[force $=$ mass \times acceleration]
3. REACTION: for every action, there is an equal and opposite reaction
[e.g. gravity]
19

Accounting for variable g forces

$$
\begin{aligned}
& \text { Let } \mathrm{s}=\text { scramjet and e = Earth } \\
& \text { According to Newton's second law, } \mathrm{F}=\mathrm{M}_{\mathrm{s}} \cdot \mathrm{a} \\
& \text { According to Newton's universal law, } \mathrm{F}=\left(\mathrm{G} \cdot \mathrm{M}_{\mathrm{s}} \cdot \mathrm{M}_{\mathrm{e}}\right) / \mathrm{r}^{2} \\
& \text { thus } \quad M_{s} \cdot a=\left(G \cdot M_{s} \cdot M_{e}\right) / r^{2} \\
& \text { or } \quad a=\left(G \cdot M_{e}\right) / r^{2} \\
& \text { where } \quad a=\text { acceleration due to gravity } \\
& r=\text { distance of scramjet from centre of Earth } \\
& \text { G = Gravitational constant } \\
& M_{e}=\text { mass of Earth }
\end{aligned}
$$

21

Accounting for variable g forces

7. What is acceleration due to gravity at 330 km above the surface of Earth (highest point reached by scramjet)

$$
\begin{aligned}
r & =0.33 \times 10^{6} \mathrm{~m} \\
R_{\mathrm{e}} & =6.37 \times 10^{6} \mathrm{~m} \\
\mathrm{a} & =9.8\left(R_{\mathrm{e}}\right)^{2} /\left(\mathrm{r}+\mathrm{R}_{\mathrm{e}}\right)^{2} \\
& =9.8\left(6.37 \times 10^{6}\right)^{2} /\left(0.33 \times 10^{6}+6.37 \times 10^{6}\right)^{2} \\
& =397.65 \times 10^{12} / 44.89 \times 10^{12} \\
& =8.86 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Newton's Law of Universal Gravitation

20

Accounting for variable g forces

6. Write an expression for acceleration due to gravity at any distance r above the surface of the Earth;
involving the radius of Earth $\left(\mathrm{R}_{\mathrm{e}}\right)$ but not \mathbf{G} or M_{e}.
$a=\left(G . M_{e}\right) /\left(r+R_{e}\right)^{2}$
at surface $r=0$
and $\mathrm{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}$
so G.Me $=9.8\left(R_{e}\right)^{2}$

hence at any height r,
$a=9.8\left(R_{e}\right)^{2} /\left(r+R_{e}\right)^{2}$
22

Accounting for variable g forces

8. What is acceleration due to gravity at 35 km above the surface of Earth (height at which scramjet fires)?
$r=0.035 \times 10^{6} \mathrm{~m}$
$R_{e}=6.37 \times 10^{6} \mathrm{~m}$
$\mathrm{a}=9.8\left(R_{\mathrm{e}}\right)^{2} /\left(\mathrm{r}+\mathrm{R}_{\mathrm{e}}\right)^{2}$

$=9.8\left(6.37 \times 10^{6}\right)^{2} /\left(0.035 \times 10^{6}+6.37 \times 10^{6}\right)^{2}$
$=397.65 \times 10^{12} / 41.02 \times 10^{12}$
$=9.69 \mathrm{~m} / \mathrm{s}^{2}$

Accounting for variable g forces

9. Calculate average acceleration due to gravity at heights 330 km and 35 km , and use that to calculate the velocity of the scramjet at ignition.
at $\mathrm{r}=330 \mathrm{~km}, a=-8.86 \mathrm{~m} / \mathrm{s}^{2}$
at $\mathrm{r}=35 \mathrm{~km}, \mathrm{a}=-9.69 \mathrm{~m} / \mathrm{s}^{2}$
so average $\mathrm{a}=[-8.86+(-9.69)] / 2=-9.28 \mathrm{~m} / \mathrm{s}^{2}$
thus Q. 3 becomes $s(t)=-9.28 / 2 t^{2}+330,000$
$=-4.64 t^{2}+330,000$
when $\mathrm{s}=35,000 ; \mathrm{t}=252 \mathrm{sec}$
and Q. 4 becomes $v(t)=-9.28 t$
when $\mathrm{t}=252 ; \mathrm{v}=-2,338.6 \mathrm{~m} / \mathrm{s}$ (\sim Mach 6.9)

25

Accounting for variable g forces

10. Use this formula to calculate the velocity of the scramjet when it fires at a height 35 km .

$$
G=6.672 \times 10^{-11} \mathrm{~m}^{3} \mathrm{~s}^{-2} \mathrm{~kg}^{-1} \quad M_{e}=5.97 \times 10^{24} \mathrm{~kg}
$$

$$
r=35 \mathrm{~km}=0.035 \times 10^{6} \mathrm{~m} \quad R_{e}=6.37 \times 10^{6} \mathrm{~m}
$$

$$
v(r)=-\sqrt{2 G M_{e}\left[\left(1 /\left(r+R_{e}\right)\right)-\left(1 /\left(H+R_{e}\right)\right)\right]}
$$

$$
=-\sqrt{\left(79.6637 \times 10^{13}\right) \times\left(0.006875 \times 10^{-6}\right)}
$$

$$
=-2,340.3 \mathrm{~m} / \mathrm{s}
$$

First estimated at $-2,401 \mathrm{~m} / \mathrm{s}$ (using one g value), then corrected to $-2,338.6 \mathrm{~m} / \mathrm{s}$ (using average g value), now corrected to $-2,340.3 \mathrm{~m} / \mathrm{s}$ (using integration)

Accounting for variable g forces

BUT there is still a source of error!

We have assumed that acceleration due to gravity changed at a constant (average) rate during descent.
Actually, acceleration changes at a different rate during descent (changes according to the square of the distance from the centre of the Earth).

Using integration, the Gravitational law, and the chain rule for integrating as a function of time and displacement, we get:

$$
v(r)=-\sqrt{2 G M_{e}\left[\left(1 /\left(r+R_{e}\right)\right)-\left(1 /\left(H+R_{e}\right)\right)\right]}
$$

where $v(r)=$ velocity of scramjet at height r, and $\mathrm{H}=$ initial (highest) height

26

Rocket science

Take home message:

You can obviously see the need for high precision when dealing with rockets, planets, high altitudes, very fast speeds, variable acceleration and big forces.

Mathematically:

$$
s^{\prime}=v=\int a
$$

28

