

1

What is LIFE?

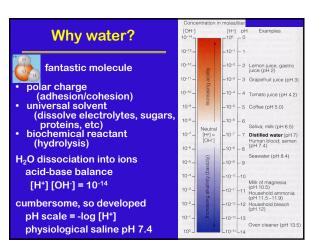
Living organisms are:

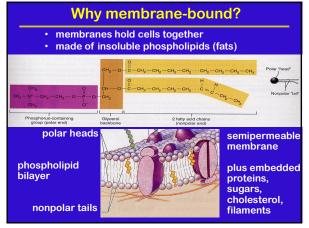
- self-replicating,
- membrane-bound,
- microscopic
- bags of
- sugary,
- proteinaceous
- water

3

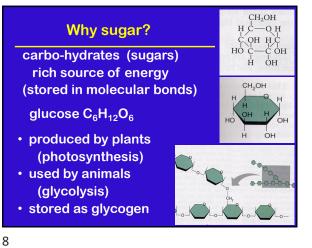
Why bags? Cells are basic units of life • preserve structural integrity • maintain boundary between internal & external environments Cells possess: • internal cytoskeletal elements

- internal organelle systems
- centralized genetic material

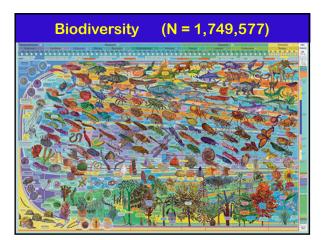


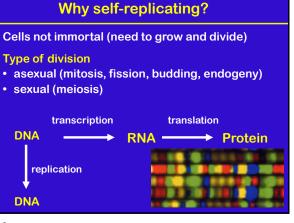

4

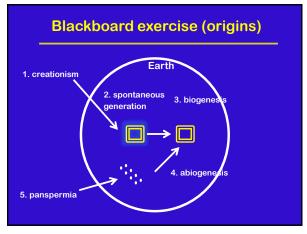
Why microscopic?


- cells 1-100 μm
 (note log scale)
- need to preserve high surface-to-volume ratio (for efficient molecular transport)
- imagine cell as cube [double length involves 4-fold change in area and 8-fold change in volume]

1 m 0.1 m	Human height Length of some nerve and muscle cells Chicken egg	Unaided eye	Ť	
1 cm 1 mm	- Frog egg			. afo
100 µm			adoose	
10 µm	Plant and animal	2	Light micn	_
1 µm	Mitochondrion	2		scope
100 nm		K		Electron microscop
10 nm	Ribosomes			Ele
1 nm	} Lipids			
	(8)			\checkmark



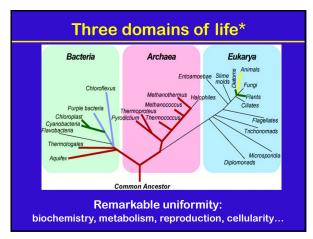




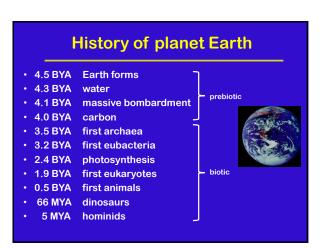
Why proteinaceous?Building blocks of life (structural, functional)
polymers composed of chains of amino acidsof the second of chains of amino acidsOf the second of the second of chains of amino acidsOf the second of the second o

ORIGIN OF LIFE?

Historically a mixture of pseudo-science and science


- creationism (life from God)
- spontaneous generation (life from non-life)
- biogenesis
- abiogenesis/biopoiesis (life from inorganic matter)

(life from life)


(panspermia theories)

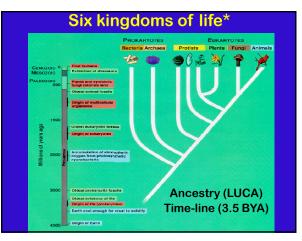
- extra-terrestrial
- terrestrial (multiple theories)

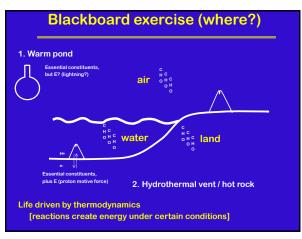
13

15

Work with extant/extinct physical forms

- comparative biology (greatest divide 'Prokaryotes'/Eukaryotes) chemical basis (hydrocarbon macromolecules)
- cellular basis (hereditary, metabolism)
- paleontology (microfossils oldest 3.5 BYA)
- phylogenetic reconstruction (differential 'molecular clocks')
- environmental prerequisites (vary with time, 'Goldilocks' zone)

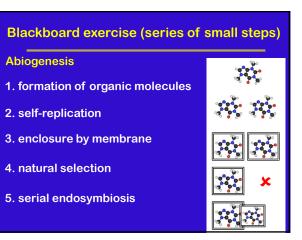

Speculation


common ancestry (Last Universal Common Ancestor - LUCA)

Why study 'origins'?

- Understand past esp. evolution (competition/collaboration) Understand present esp. interactions (eco-systems)
- Predict /manipulate future!

14



Prebiotic conditions

- 50 years ago, Miller & Urey simulated primordial environmental conditions in glass flasks
- ocean of water (polar molecule, universal solvent)
 + atmosphere of hydrogen, carbon dioxide, methane, ammonia + volcanic heat + lightning sparks
- observed spontaneous synthesis of organic compounds, including simple amino acids and sugars

19

21

Proton gradients

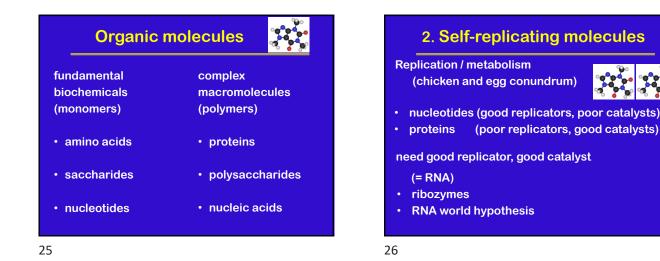
Natural proton gradients

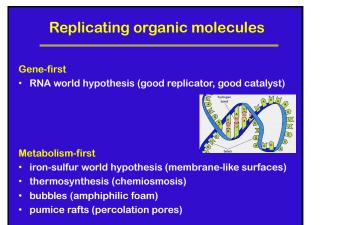
- = alkaline hydrothermal vents (not volcanic smokers, but seepers)
- seawater percolates down electron-dense rocks (iron-magnesium mineral olivine) which react to form serpentinite that expands and cracks rocks allowing in more water (self-perpetuating)

- serpentinization produces alkaline proton poor fluids rich in hydrogen gas, and the heat it releases drives these fluids back up to ocean floor where they precipitate and form towers

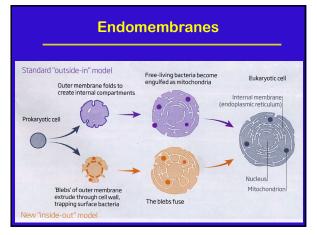
Origin of organic molecules

- **Primordial soup (components)**
- warm pond (oceanic/atmospheric)
- hydrothermal vents (upwellings)
- hot rock (nanobes)
- Structured models (templates)
- pyrites (iron-sulfur world) (built-in E)
- sphalerite (zinc world) (retain radiant E)
- radioactive beach (actinides)
- community clay (mineral crystals)
- Stochastic models (unpredictable)
- · hypercycles (ribozymes)
- autocatalysis (chemical networks)


20

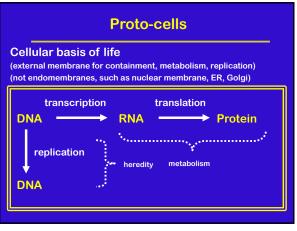

1. Organic molecules

CO₂ + H₂ → organic molecules + E need <u>proton-motive force</u> (electrical driving force) cells powered by electricity (difference in concentration of protons across membrane) produces electrical potential difference of ~150 mV but operates only over 5 nm (equivalent to 30 million volts per metre) (similar to lightning) used to make E-rich fuel ATP, power flagella, etc but how to establish proton gradient?


22

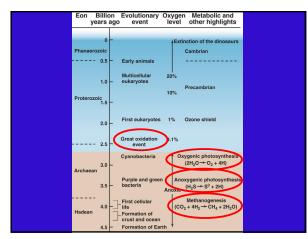
Hot rock hypothesis Early oceans with little oxygen, rich in dissolved, iron, mildly acidic, excess of protons Proton-motive force (differential between alkaline fluids from vents and acidic ocean) Ments were labyrinths of micropores rich in mineral catalysts which: • facilitated reaction of CO₂ and H₂ • to form aa, lipids, sugars, nucleobases + E Conforms to second law of thermodynamics (oncerning E flow) (Life driven by it!)

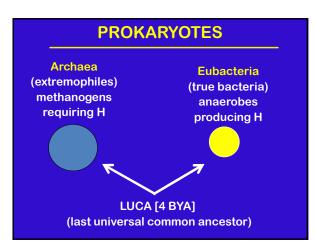
27



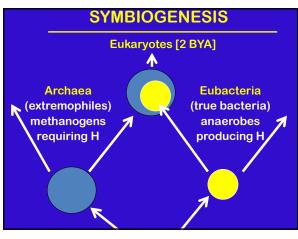
Replicating molecules enclosed by lipid membranes formation of double-walled liposomes ("bubbles")

Liposom


- clay theory (some clays catalyse formation of RNA)
- vents (proto-cells in pores)


Cellular basis of all life (except viruses)




CELLSfirst cells (LUCA) – anaerobic autotrophs
 $2H_2 + CO_2 \rightarrow H_20 + [CH_20]$ metabolic diversification
• methanogenesis
 $4H_2 + CO_2 \rightarrow CH_4 + 2H_20$ (archaea) 3.9 BYA
[microfossils, stromatolites, protobionts, nanobes]• phototrophy (solar E)
 $H_2S \rightarrow S + 2H$ an-oxygenic (eubacteria) 3.2 BYA
 $2H_2O \rightarrow O_2 + 4H$ oxygenic (cyanobacteria) 2.7BYA \Rightarrow Great Oxidation Event 2.6 BYA
(ozone shield, surface colonization)

