

7

9

11

8

10

Maths in Science			
FUNCTIONS	Chemistry/Physics	Biology	Biomedical
LINEAR	Temperature (altitude)		Alcohol (metabolism)
QUADRATIC		Bird distribution (thrush)	Breast cancer (incidence with age)
POWER	Wind chill factor (temp., velocity)	Biodiversity (plant species)	
PERIODIC	Hours of daylight (seasons)		Respiration
EXPONENTIAL	```Radio-active isotopes Cooling pH Atmospheric \(\left[\mathrm{CO}_{2}\right]\)```	Algae Bacteria Fish Oysters	Cancer (tumour)
SURGE	Glucose (glycaemic index)		Nicotine Alcohol Antidepressants Contraceptives

13

15

14

16

Differential Equations

- single population (stage-structured) [fish, turtles]

system of DE's: $\quad J^{\prime}=5 A-\boldsymbol{J}$

$$
A^{\prime}=0.5 J-A
$$

- two populations (predator-prey) [frogs/crickets, lynx/hare]

19

Consequences of misdiagnosis

Poor sensitivity

unacceptable number of false negatives

- no treatment \rightarrow disease progression \rightarrow death

Poor specificity

unacceptable number of false positives

- unnecessary treatment \rightarrow side effects \rightarrow cost

21

Review - PYTHON	
PROGRAMMING (write your own)	
from \qquad future \qquad import division from pylab import *	
open, new, save, run module, cut-n-paste	
\# comments	\# number squared
I input variable ('prompt')	a = input ('no.?')
S expression (function)	$\mathrm{b}=\mathrm{a} *$ 2
O output (print)	print b

23

20

22

24

25

27

26

