

Course design triple exposure to information preview **VIEW** review **lectures** reading tutorials study laboratories

2

Theory and Practice in Science

thinking

- philosophy (constantly evolving)
- reasoning (logic, courage)

· quantitative skills

- fundamental mathematics (algebra, calculus)
- modelling (functions, estimation, prediction)
- computer science (Python)

· contextual relevance

3

- natural sciences (biology, physics, chemistry)
- multiple disciplines, contemporary anecdotes

Quantitative Models (approximation) use mathematics to: predict change understand change control change **System** → Output Input → know I and S, predict O know I and O, understand S know S and O, control I

4

5 6

FUNCTIONS blood velocity v. vessel area exponential (slower flow in pools than pipes) y = ce^{-kx} 50 45 40 (cm/s) 35 30 25 15 10 5 0 arteries veins arterioles venules capillaries 1000 2000 3000 4000 Cross-sectional area (sq.cm) 9

FUNCTIONS			
nitric oxide concentration v. time (potent vasodilator from endothelial cells)	• surge <i>y = ax^p e^{-kx}</i>		
10 (mg/m) 8 0 0 0.5 1 Time (secs)	1.5 2		

10

Review - MATHS				
FUNCTIONS (relationships, var	iables, constants)			
Iinear quadratic periodic power	$y = mx + c$ $y = ax^{2} + bx + c$ $y = a + b.\sin(c.x)$ $y = ax^{p}$	(gradient) (maxima/minima) (equil, ampl, period		
• exponential • surge	$y = ce^{kx}$ $y = ax^{0} e^{-kx}$	(growth/decay) (combination)		

Maths in Science				
FUNCTIONS	Chemistry/Physics	Biology	Biomedical	
LINEAR	Temperature (altitude)		Alcohol (metabolism)	
QUADRATIC		Bird distribution (thrush)	Breast cancer (incidence with age)	
POWER	Wind chill factor (temp., velocity)	Biodiversity (plant species)		
PERIODIC	Hours of daylight (seasons)		Respiration	
EXPONENTIAL	Radio-active isotopes Cooling pH Atmospheric [CO ₂]	Algae Bacteria Fish Oysters	Cancer (tumour)	
SURGE	Glucose (glycaemic index)		Nicotine Alcohol Antidepressants Contraceptives	

11 12

Chemistry/Physics	Biology	Biomedical		
Temperature (altitude)	Bird distribution (thrush)	Alcohol metabolism		
		Breast cancer		
Wind chill factor (temp., velocity)	Biodiversity (plant species richness)	(incidence with age)		
		Respiration		
Hours of daylight	Algae			
(seasons)	(blooms)	Cancer (tumour size)		
Radio-active isotopes	Bacteria			
Cooling pH	(growth)	Nicotine		
	Fish	Alcohol		
Atmospheric [CO ₂]	(population size)			
		Antidepressants		
Glucose	Oysters			
(glycaemic index)	(yield)	Contraceptives		

13 14

15 16

MEDICAL TESTING (and Bayes theorem) DISEASE STATUS present absent positive В A+B TEST D C+D negative A+C B+D N **ACCURACY** (A+D)/N**SENSITIVITY** A/(A+C)SPECIFICITY D / (B+D)

19 20

Consequences of misdiagnosis

Poor sensitivity
unacceptable number of false negatives

• no treatment → disease progression → death

Poor specificity
unacceptable number of false positives

• unnecessary treatment → side effects → cost

PREDICTION

Repetitive calculations

• ideal job for computer

• 'off-the-shelf' versus 'do-it-yourself'

• QC/QA 'garbage in, garbage out'

21 22

You get your marks back for 3 assignments. Write a program to calculate your average mark and print your final grade. T1 = input ("score for test 1" **INPUT** T2 = input ("score for test 2") marks T3 = input ("score for test 3") (x3) T = (T1+T2+T3)/3SYSTEM calculate av. if T >= 85: (formula) print "grade 7" elif T >= 75 and T < 85: **OUTPUT** print "grade 6" elif T >= 65 and T < 75: rank grades print "grade 5"
elif T >= 50 and T < 65:</pre> (conditionals) print "grade 4" print "FAIL"

23 24

Choices and Repetition		
Conditionals if, else (elif)	if BAC > 0.05: print 'Do not drive' else: print 'Go for it'	
Loops while	<pre>i = 1 while i < 5: print i i = i+1 print 'done'</pre>	

