SCIENCE

1

Units

density $=1.03$ grams $/$ millilitre
SI base units ($\mathrm{m}, \mathrm{kg}, \mathrm{s}, \mathrm{K}, \mathrm{mol}, \mathrm{A}, \mathrm{cd}$)
Derived units: energy $=\mathrm{kg} \cdot \mathrm{m}^{2} . \mathrm{s}^{-2}$
Other systems: e.g. Imperial (pounds, feet..)
Unit conversion: factor-label method convert 20 lb to kg (when $1 \mathrm{lb}=0.45 \mathrm{~kg}$)
$20 \mathrm{lb} \times(0.45 \mathrm{~kg} / 1 \mathrm{lb})=9 \mathrm{~kg}$
Special conversions: light year = distance density $=\mathrm{g} / \mathrm{mL}=\mathrm{g} / \mathrm{cc}^{3}$

3

5

Science and numbers

Science is descriptive (observational and experimental)

- qualitative (presence/absence, shape, colour...)
- quantitative (number, length, height, weight, mass...)
e.g. density $=1.03$ grams/millilitre
numeric value units
value given to 3 significant figures (accuracy/precision)
need to preserve significant figures
if divide by 3 , gives 0.343 (not 0.343333333333333333 ..
when doing logarithms, preserve sig. figs. in mantissa $\log (65)=1.81$ (not 1.81291335. .) (only 2 sig.figs.)

2

4

6

7

9

Weight vs height (ideal?)(BMI?)

Isometric or allometric scaling?
11

Orders of magnitude

Let us examine body size:
length / height / diameter (depending on orientation)
SI unit = metre

nano(billionth)
10^{-9}

micro-
(millionth)
10^{-6}

milli-
(thousandth)
10^{-3}

metres (base unit)
10^{0}

8

10

Isometric growth

Poses problems for organisms

- cell / organ / body doubles in length,
but now has 8 times volume to support,
with only 4 times increase in surface area
- organism has 8 times mass to support,
but cross-sectional area only increased 4-fold
Creates mismatch between scaling and physical demands (e.g. elephant is not an up-sized mouse)
Mismatch avoided by:
- being overbuilt when small
- changing proportions during growth (allometry)

13

15

17

14

Metabolic rate vs body mass

16

Allometry

Numerous examples of allometric scaling
Biology: - metabolic rate \& size

- heat rate \& size
- respiration rate \& size
- muscle characteristics \& size
- bone characteristics \& size
- locomotion \& size

Temperature

Numerical measure of hot or cold

(measured by detection of heat radiation or particle velocity or kinetic energy, or by bulk behaviour of thermometric material)
Calibrated in temperature scales in:

- point chosen as zero degrees, and
- magnitudes of incremental units on scale

Celsius scale (${ }^{\circ} \mathrm{C}$): empirical scale (centigrade)
$0^{\circ} \mathrm{C}=$ freezing point $\mathrm{H}_{2} \mathrm{O}, 100^{\circ} \mathrm{C}=$ boiling point $\mathrm{H}_{2} \mathrm{O}$
Fahrenheit scale: empirical
$32^{\circ} \mathrm{F}=$ freezing point $\mathrm{H}_{2} \mathrm{O}, 212^{\circ} \mathrm{F}=$ boiling point $\mathrm{H}_{2} \mathrm{O}$
Kelvin scale: thermodynamic scale (absolute zero scale)
$0 \mathrm{~K}=-273.15^{\circ} \mathrm{C}$ or $-459.67^{\circ} \mathrm{F}$
19

21

23

20

22

24

Logarithms

Shown that logarithmic transformations can make power functions appear as linear functions $y=x^{p}+c$ becomes: $\log y=p \log x+\log c$ $y=a^{x}+c$ becomes: $\log y=x \log a+\log c$

Logarithmic scales (display values of physical quantity using intervals corresponding to orders of magnitude)

- Richter scale (earthquakes) - entropy (thermodynamics)
- decibel (sound)
- pH (acidity/alkalinity)
- octave scale (music)
- stellar magnitude scale (astronomy)
- f-stops (photography)
- Krumbein scale (geology)

25

27

26

28

Science

29

