SCIENCE

MATRICES

Prof Peter O'Donoghue

1

Household energy use

Record weekly energy usage for multiple households (H1-H4) over two weeks:

Household	Week 1			Week 2		
	electricity	gas	petrol	electricity	gas	petrol
H1	140	50	40	160	50	20
H2	100	20	60	120	40	40
H3	180	0	50	220	0	50
H4	80	80	40	80	120	20

Tables rapidly become complicated/convoluted!
How should a computer handle such tables?
3

Matrix operations						
Transform data to matrices						
Household	Week 1			Week 2		
	electricity	gas	petrol	electricity	gas	petrol
H1	140	50	40	160	50	20
H2	100	20	60	120	40	40
H3	180	0	50	220	0	50
H4	80	80	40	80	120	20
$E_{1}=$	$\left(\begin{array}{c}140 \\ 100 \\ 180 \\ 80\end{array}\right.$	$\left.\begin{array}{ll}50 & 40 \\ 20 & 60 \\ 0 & 50 \\ 30 & 40\end{array}\right)$		$2=\left(\begin{array}{c}160 \\ 120 \\ 220 \\ 80\end{array}\right.$	50 40 0 120	$\left.\begin{array}{l}20 \\ 40 \\ 50 \\ 20\end{array}\right)$
	What is total energy use (T)?					

5

5

Household energy use

Record weekly energy usage for your household (H1):

Type
quantity units

- electricity

140
50
kWh

- gas

40 units

- petrol

> .

L

Create a matrix

Household	Week 1		
	electricity	gas	petrol
H1	140	50	40
H2	100	20	60
H3	180	0	50
H4	80	80	40

Let E be a matrix that shows energy use of H1-4 for 1 week

$$
E_{1}=\left(\begin{array}{ccc}
140 & 50 & 40 \\
100 & 20 & 60 \\
180 & 0 & 50 \\
80 & 80 & 40
\end{array}\right)
$$

This is a 4×3 matrix (4 rows, 3 columns)
(4 households, 3 energy types)
4

Matrix addition (and subtraction)

$\left.\begin{array}{rl} & \text { What is total energy use (T)? } \\ T=E_{1}+E_{2} & =\left(\begin{array}{ccc}140 & 50 & 40 \\ 100 & 20 & 60 \\ 180 & 0 & 50 \\ 80 & 80 & 40\end{array}\right)+\left(\begin{array}{ccc}160 & 50 & 20 \\ 120 & 40 & 40 \\ 220 & 0 & 50 \\ 80 & 120 & 20\end{array}\right) \\ & =\left(\begin{array}{ccc}140+160 & 50+50 & 40+20 \\ 100+120 & 20+40 & 60+40 \\ 180+220 & 0+0 & 50+50 \\ 80+80 & 80+120 & 40+20\end{array}\right) \\ & =\left(\begin{array}{ccc}300 & 100 & 60 \\ 220 & 60 & 100 \\ 400 & 0 & 100 \\ 160 & 200 & 60\end{array}\right) \quad \text { Matrices } \\ \text { must be } \\ \text { same size }\end{array}\right]$.

6

7

Convert E table to G emissions

Household	Average usage		
	electricity	gas	petrol
H1	150	50	30
H2	110	30	50
H3	200	0	50
H4	80	100	30

Calculate greenhouse gas emissions (G) for H1:

$$
\begin{aligned}
\mathrm{G} 1 & =(150 \mathrm{kWh} \times 1 \mathrm{~kg} / \mathrm{kWh})+(50 \text { units } \times 0.4 \mathrm{~kg} / \mathrm{unit})+(30 \mathrm{~L} \times 2.2 \mathrm{~kg} / \mathrm{L}) \\
& =150 \mathrm{~kg}+20 \mathrm{~kg}+66 \mathrm{~kg} \\
& =236 \mathrm{~kg} \quad
\end{aligned}
$$

9

Matrix multiplication

Calculate average weekly greenhouse gas emissions

$$
\mathbf{G}=\mathbf{A} \times \mathbf{F}=\left(\begin{array}{ccc}
150 & 50 & 30 \\
110 & 30 & 50 \\
200 & 0 & 50 \\
80 & 100 & 30
\end{array}\right) \times\left(\begin{array}{c}
1 \\
0.4 \\
2.2
\end{array}\right)
$$

add products of columns in A by rows in F

$$
=\left(\begin{array}{l}
(150 \times 1)+(50 \times 0.4)+(30 \times 2.2) \\
(110 \times 1)+(30 \times 0.4)+(50 \times 2.2) \\
(200 \times 1)+(0 \times 0.4)+(50 \times 2.2) \\
(80 \times 1)+(100 \times 0.4)+(30 \times 2.2)
\end{array}\right)=\left(\begin{array}{l}
236 \\
232 \\
310 \\
186
\end{array}\right)
$$

Matrix manipulations

Convert energy usage into greenhouse gas emissions (kg CO2

1 kWh electricity produces 1 kg CO 2

1 unit gas produces $0.4 \mathrm{~kg} \mathrm{CO}_{2}$
1 L petrol produces $2.2 \mathrm{~kg} \mathrm{CO}_{2}$

8

10

12

MATRICES

Very clever mathematics
Can handle large data sets
Can handle complex manipulations
Ideal for computerization

13

Exemplar: age/stage population structure

15

Stage-structured diagrams

17

Matrix operations

Must conform to specific set of rules

- matrix multiplication $(m \times n) \times(n \times q)=(m \times q)$
- order of operations
($\mathrm{AB} \neq \mathrm{BA}$)
- identity matrices
($\mathrm{A} \times \mathrm{I}=\mathrm{A}$)
- inverse matrices
(If $A X=B$, then $X=A^{-1} B$)

Let us examine these operations in another context; that of population biology, involving simultaneous equations

16

18

19

Matrix multiplication

calculate $\mathrm{N}_{2} \quad$ (move forward in time)

21

Inverse matrix

To solve matrix equation, need to calculate inverse matrix
When $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right), A^{-1}=\frac{1}{(a d-b c)}\left(\begin{array}{cc}d & -b \\ -c & a\end{array}\right)$

When $A=\left(\begin{array}{cc}0.4 & 2 \\ 0.5 & 0.2\end{array}\right), A^{-1}=\frac{1}{(-0.92)}\left(\begin{array}{cc}0.2 & -2 \\ -0.5 & 0.4\end{array}\right)$

WHY?
23

Matrix multiplication

The current population $\left(N_{1}\right)$ comprises
100 eggs (E), 50 larvae (L),
10 pupae (P), and 2 adults (A)
Expressed as matrix:

$$
\left(\begin{array}{r}
100 \\
50 \\
10 \\
2
\end{array}\right)
$$

20

Retrospective calculations

Another ectoparasite of dogs has only two life-cycle stages (juveniles and adults) which cycle monthly. The transition matrix for this parasite is:

$$
\left(\begin{array}{cc}
0.4 & 2 \\
0.5 & 0.2
\end{array}\right)
$$

There were 44 juveniles and 9 adults on your dog in July.
How many were there in June?
(i.e. the previous month)

22

Solving matrix equations

The solution to $A X=B$ is $X=A^{-1} B$ (if A^{-1} exists)

$$
A=\left(\begin{array}{cc}
0.4 & 2 \\
0.5 & 0.2
\end{array}\right), X=P_{\text {June }}=\binom{x}{y}, B=P_{\text {July }}=\binom{44}{9}
$$

$$
\text { so } P_{\text {June }}=\frac{1}{(-0.92)}\left(\begin{array}{cc}
0.2 & -2 \\
-0.5 & 0.4
\end{array}\right) \times\binom{ 44}{9}
$$

$$
=\frac{1}{(-0.92)}\binom{-9.2}{-18.4}=\binom{10}{20}
$$

so there were 10 juveniles ands 20 adults in June!
24

