SCIENCE
MATRICES
<image/>

Household energy use					
Record weekly energy usage for your household (H1):					
Туре	quantity	units			
 electricity 	140	kWh			
• gas	50	units			
 petrol 	40	L			

2

Household energy use Record weekly energy usage for multiple households (H1-H4) over two weeks: Week 1 Week 2 Household electricity gas petrol electricity gas petrol H1 140 50 40 160 50 20 100 20 60 120 40 H2 H3 180 50 220 40 H4 80 80 80 120 20 Tables rapidly become complicated/convoluted!

Tables rapidly become complicated/convoluted How should a computer handle such tables?

3

1

Create a matrix						
Household	v	Veek 1		1		
	electricity	gas	petrol			
H1	140	50	40			
H2	100	20	60			
H3	180	0	50			
H4	80	80	40			
Let E be a matrix that shows energy use of H1-4 for 1 week						
	140 50	J 40	()			
E ₁ =	100 20	J 60				
	180 0	50				
	C80 8	. 40	ワ			
This is a 4 x 3 matri	x (4 rows, 3 (4 house	3 colu holds,	mns) 3 energ	gy types)		

Scalar multiplication					
What is average energy use (A)?					
A = ½ T	= ½ x	$ \begin{pmatrix} 300 & 100 & 60 \\ 220 & 60 & 100 \\ 400 & 0 & 100 \\ 160 & 200 & 60 \end{pmatrix} $			
	=	½x x 300 ½x x 100 ½x x 60 ½x 220 ½x x 60 ½x x 100 ½x 400 ½x x 0 ½x 100 ½x 160 ½x 200 ½x 60			
	=	150 50 30 110 30 50 200 0 50 80 100 30 Scalar applied to whole matrix			

Matrix manipulations
Convert energy usage into greenhouse gas emissions (kg CO ₂)
1 kWh electricity produces 1 kg CO ₂
1 unit gas produces 0.4 kg CO ₂
1 L petrol produces 2.2 kg CO ₂

MATRICES

Very clever mathematics Can handle large data sets Can handle complex manipulations Ideal for computerization

Matrix operations Must conform to specific set of rules • matrix multiplication (m x n) x (n x q) = (m x q) • order of operations (AB ≠ BA) • identity matrices (A x I = A) • inverse matrices (If AX = B, then X = A⁻¹B) Let us examine these operations in another context; that of population biology,

involving simultaneous equations

14

<section-header><section-header><section-header><image><image>

15

