SYMBIOSIS

1

Why "Symbiotic Interactions"?

LIFE ON EARTH

- chemical basis (macromolecules)
 carbon-based life on water-planet
- genetic code (DNA) replication (hereditary) transcription, translation (metabolism)
- cellular organization (membranes, organelles) basic units of life
- evolution (natural selection) - intra-species competition
- symbioses (living together) inter-species interactions
- collective co-existence (ecology)

2

Course description

- Promote a broad and deep understanding of different symbiotic interactions
- · covering a diverse array of symbioses in both terrestrial and marine environments
- explore potential applications and future directions in research and industry
- using interactive discussion workshops to address course content

Learning Objectives

beneficial mutualism, neutral commensalism, detrimental parasitism

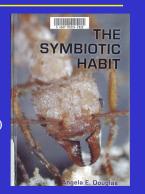
- from evolution of eukaryotes to regulation of ecosystems

Broad term to describe interactive relationships

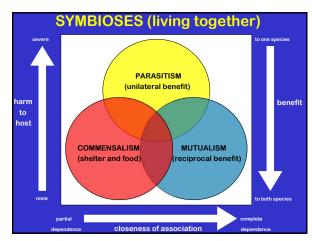
- bio-discovery, level of interaction, mode of operation

- applications for science, business and industry

Symbiosis instrumental to life on Earth


Many partnerships yet to be resolved

Potential utilization


3

Reference text

The Symbiotic Habit Angela E Douglas (2010) ISBN: 978-0-691-11341-8 (Princeton University Press)

4

Survey of Benefits Gained from Symbiosis and Non Persistent Mutualisms	
Relationship	Examples
Access to metabolic capability	
Inorganic Carbon Fixation	Cyanobacteria-derived plastids in algae and plants
	Algae /Cyanobacteria in lichenized fungi, protists, and animals
	Chemosynthetic bacteria in animals
Aerobic respiration	Bacteria-derived mitochondria in eukaryotes
Nltrogen fixation	Bacteria (eg Rhizobia, Cyanobacteria in lichenized fungi Bacteria in a few insects (termites)
Cellulose degradation	Bacteria in vertebrates Protists in a few insects (eg lower termite, woodroaches) Fung in Macrotermitidae
Nutrient biosynthesis (eg vitamins, essential amino acids)	Bacteria or fungi in animals, especially insects, and in protists
Degradation of toxins	Bacteria in animal guts
Toxin Production	Bacterial in animals (eg insects, bryozoans, sponges)
Hydrogen Consumption	Methanogenic bacteria in anaerobic protists

7

Case studies & Group discussions

Establish basics!

Where does the interaction occur? Intracellular / Extracellular / Environment/ Ecology

Who are the partners involved? Hosts / Microbes (Prokaryotic / Eukaryotic)

Evolutionary history of Interaction? What has driven the relationship to develop? (Parasitism; Commensalism; Mutualism) (Gene transfer; Coevolution)

9

Survey of Benefits Gained from Symbiosis and Non Persistent Mutualisms		
Relationship	Examples	
Protection from antagonists		
Protection from herbivores	Ants associated with plants remove or deter herbivores	
Protection from Predators	Ants deter predators / parasitoids of hemipteran insects and lycaenids Sea anemones /hydroids protect hermit crabs	
Removal of ectoparasites	From client fish by cleaner fish; from ungulates (eg gazelle) by pecking birds	
Protection from pathogens	Microbiota in animal guts and plant rhizosphere (immediate environments around roots)	
Dispersal / Mobility		
Biotic pollination	Male gamete (pollen) transport to stigma of plants by insects, birds, mammals	
Biotic Seed Dispersal	Seeds transported away from parent plant by birds, mammals and ants	
Ant-tended hemipterans	Transport to suitable feeding sites on host plants	
Agriculture	Cultivation of fungi by bark and ambrosia beetles, termites and attinine ants.	
Adapted from Douglas (2010)		
Adapted from Douglas (2010)		

8

Case studies & Group discussions

Nature of relationship!

Mechanisms (molecular) of onset and maintenance?

Translocation / communication?

Causes of relationship breakdown?

Functional and ecological roles and significance?

10

Schedule • What is Symbiosis? Deep Sea Vents / Chemoautotrophy Rumen Ecosystem and Herbivory • Vertebrate Guts and Human Microbiome Nitrogen Fixation and Legumes Endophytic Fungi Plant Pathogenesis

Insect Symbioses

• Mycorrhizae

Marine Symbioses

12