
"Origin of Life"

 Topic

 Origin of life (mixture of pseudo-science and science)

 • creationism
 (life from God)

 • spontaneous generation (life from non-life)

 • biogenesis
 (life from life)

 • abiogenesis/biopoiesis
 (life from inorganic matter)

 • extra-terrestrial
 (panspermia theories)

 • terrestrial
 (multiple theories)

PROTOCTISTS

(0/2

BACTERIA

EUBACTERIA ORIGIN of LIFC as CELLS?

3-1

2

SET

Two prokaryotic domains

four eukaryotic domains

protoctista

Posits symbioses of

different life-forms

archaebacteria

eubacteria

Giving rise to

fungi

4

animalia plantae

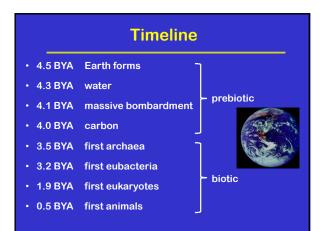
Where did they come from?

1

Scientific extrapolation

Work with extant/extinct physical forms

- comparative biology (greatest divide Prokaryotes/Eukaryotes)
- chemical basis (hydrocarbon macromolecules)
- cellular basis (hereditary, metabolism)
- paleontology (microfossils oldest 3.5 BYA)
- phylogenetic reconstruction (differential 'molecular clocks')
- environmental prerequisites (vary with time, 'Goldilocks' zone)


Speculation

• common ancestry (Last Universal Common Ancestor - LUCA)

Why study 'origins'?

- Understand past esp. evolution (competition/collaboration)
- Understand present esp. interactions (eco-systems)
- Predict /manipulate future!

3

Conceptual basis

Matter

- self-replicating molecules
- self-organization (polymers, membranes)

Energy

- proton motive forces
- steady supply of electrons
- thermodynamics

'Life'

- proteinoids (cross-linked amino acids)
- protobionts/microspheres (with membranes)
- protocells (with nucleic acids)

Prebiotic Chemistry	
fundamental biochemicals (monomers)	complex macromolecules (polymers)
• amino acids	proteins
• saccharides	polysaccharides
nucleotides	nucleic acids

Prebiotic

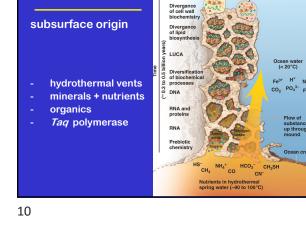
primordial soup

- 50 years ago, Miller & Urey simulated primordial environmental conditions in glass flasks
- ocean of water + atmosphere of methane, ammonia, hydrogen, carbon dioxide + volcanic heat + lightning sparks
- observed spontaneous synthesis of organic compounds, including simple amino acids and sugars

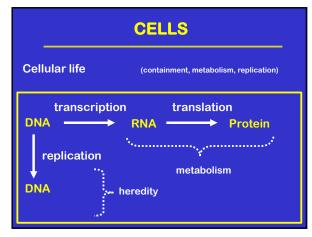
LIFE

ia Farly Archaes

8


Origin of organic molecules

Primordial soup (components)


- warm pond (oceanic/atmospheric)
- hydrothermal vents (upwellings)
- hot rock (nanobes)
- Structured models (templates)
- pyrites (iron-sulfur world) (built-in E)
- sphalerite (zinc world) (retain radiant E)
- radioactive beach (actinides)
- community clay (mineral crystals)
- Stochastic models (unpredictable)
- hypercycles (ribozymes)
- autocatalysis (chemical networks)

9

7

Dispersal to other habita

From organic molecules to protocells

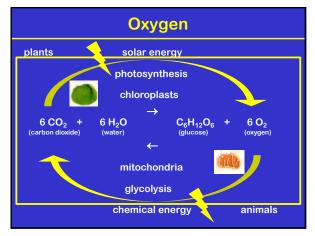
Gene-first

• RNA world hypothesis (good replicator, good catalyst)

Metabolism-first

- iron-sulfur world hypothesis (membrane-like surfaces)
- thermosynthesis (chemiosmosis)
- bubbles (amphiphilic foam)
- pumice rafts (percolation pores)

Multiple origins


SET (merger of different forms)

• LUCA

CELLS
first cells (LUCA) – anaerobic autotrophs
$2H_2 + CO_2 \rightarrow H_20 + [CH_20]$
metabolic diversification - methanogenesis
$4H_2 + CO_2 \rightarrow CH_4 + 2H_20$ (archaea) 3.9 BYA
[microfossils, stromatolites, protobionts, nanobes]
- phototrophy (solar E)
$H_2S \rightarrow S + 2H$ an-oxygenic (eubacteria) 3.2 BYA
$2H_2O \rightarrow O_2 + 4H$ oxygenic (cyanobacteria) 2.7BYA
\Rightarrow Great Oxidation Event 2.6 BYA
(ozone shield, surface colonization)

Billion Evolutionary Oxygen Metabolic and years ago event level other highlights n of the Cambri Phon --- 0.5 Early animals Multicellula eukaryotes 1.0 cambrian 10% 1% First eukaryotes Ozone shield Great oxidatio event Cyanob ($2H_2O \rightarrow O_2 + 4H$) Arch Purple and gro bacteria Anoxygenic photosyr (H₂S→S⁰ + 2H) First cellular life Formation of crust and ocean Formation of Ea Methanogenesis (CO₂ + 4H₂ → CH₄ + 2H₂O) ladean

14

15

13

Extraterrestrial

Explore solar system

Explore neighboring systems

Astrobiology, 'Goldilocks' zone

Instrumentation to detect matter, energy

Symbiosis

"Life did not take over the globe by combat, but by networking!"

16