SCIE1000, Solutions to Tutorial Week 13.
(1) The next two pages contain hand-written answers which would receive full marks on an exam. (Pay careful attention to these solutions; we didn't hand-write them because we were too lazy to typeset. Instead, the solutions should give you a good idea of how little you need to write, how 'messy' you can be, and how you can use abbreviations.)

2014 exam. Questim6
1.

$$
958 \times 10^{\circ 8 \mathrm{veccc}} \rightarrow 0.095
$$



$$
\begin{aligned}
& S^{\prime}=-0.095 S-2.5 \frac{I S}{N} \\
& I^{\prime}=2.5 I S \\
& N
\end{aligned}-0.495 I-0.005 I .
$$

2. Conservation of people: no birth or decks.
3. 

$$
\begin{aligned}
& S^{\prime}=90498-100000=-9503 \\
& I^{\prime}=3-1=2 . \\
& R^{\prime}=9500-0=9500 . \quad P^{\prime}=0
\end{aligned}
$$

4. Starts slowly; by Week 7205 infected but in rent 8 weeks the grows to 3105 infected After 7 weeks I paralysed, rises to 138 by week 30. Mort $P$ case l occur after week 15 or so. Epidemic peaks around week 15. Mostly over by week 30. Most $R$ pele were vaccinated.

2014 exam. Question 6 continued
S. Because only 1 \% of I becomes $P$, and $I$ is very low for sure weeks of start, os The epidemic "takes off"
6. $3^{\prime}$ always $\leqslant 0$ : people on leave S $(\rightarrow$ Ror $\rightarrow I)$ and never return to $S$.
I' canbe tue and -we: makes rosie that numbers of I $T$ and $\downarrow$ (see table, eg).
$R^{\prime}$ : olwas $\geqslant 0$ once removed/recovered, never leave the category
pl. always $\geqslant 0$. Pordysis is permanent in this model.
(2) Answers will vary.
(3) Answers will vary.
(4) Answers will vary.
(5) 1. Each arrow that does not point to another circle indicates a transition to death. These transition probabilities are calculated by dividing the total number of deaths in each stage by the total population in that stage:

$$
\frac{122}{7600}=0.016 \quad \frac{30}{6600}=0.005 \quad \frac{44}{1400}=0.031
$$

As we are assuming that each person in the youth stage lives for 15 years, in one year one fifteenth of them will transition into adults. Thus the transition from youth to adult is $\frac{1}{15}=0.067$. Similarly, the transition from adult to older person is $\frac{1}{35}=0.029$.
Finally, in 2010, 6.6 million Nigeriens produced 700 thousand live births. This is $\frac{700}{6600}=0.106$ births per adult. This gives the adults to youth transition probability.
2. From the table, we have that $Y_{0}=7600, A_{0}=6600$ and $O_{0}=1400$ thousand people. The initial rate of change of these values can be found by substituting into the differential equations:

$$
\begin{aligned}
Y_{0}^{\prime} & =-0.083 \times 7600+0.106 \times 6600=68.8 \\
A_{0}^{\prime} & =0.067 \times 7600-0.034 \times 6600=284.8 \\
O_{0}^{\prime} & =0.029 \times 6600-0.031 \times 1400=148
\end{aligned}
$$

Using Euler's method, we can then calculate

$$
\begin{aligned}
Y_{1} & =Y_{0}+\Delta t Y_{0}^{\prime}=7600+2 \times 68.8=7737.6 \\
A_{1} & =A_{0}+\Delta t A_{0}^{\prime}=6600+2 \times 284.8=7169.6 \\
O_{1} & =O_{0}+\Delta t O_{0}^{\prime}=1400+2 \times 148=1696
\end{aligned}
$$

3. The prediction from Euler's method would be greater than the UN's prediction. The Euler's method prediction assumes that all population growth and death rates will stay the same, however the UN's prediction would likely take into account a decreasing population growth rate and death rates.
4. A. A very successful campaign promoting contraception would decrease the fertility rate of the Nigerien population, which would cause $d$ to decrease.
B. The new disease will (hopefully) not affect the youth population, and will probably not have a big effect on the older population, but should cause a higher death rate in the adult population. Also, if more sexual encounters result in death, rather than a child, the fertility rate should drop also. Thus, $c$ will increase, $f$ may increase a small amount, and $d$ will likely decrease.
C. Improvements in public health and nutrition should decrease the death rates of all parts of the population. So $a, c$ and $f$ should all decrease.
There will be some minor additional secondary effects, but the above show the main impacts. Notice that none of the scenarios affected the rates $b$ and $e$. This is because they only depend on the number of year ages in each stage of the life cycle diagram, not the demographics of the Nigerien population.
(6) This was a task to do, not a question
(7) Here is an example of a hand-written answer which would receive full marks on an exam.

2014 excom Question 2.

1. Number infected $=0.612 \times 500=306$
$\Rightarrow$ not infected $=194$
Sensitiny $=0.92 \quad$ spectRal $=908$
sens $=\frac{A}{A+C}$ so $0.92=\frac{A}{306}$ so $A \approx 282$
So $C=306-282=24$
spec $=\frac{D}{B+D}$ so $0.9=\frac{D}{194}$ so $D=175$ and $B=19$
2. $A+B=282+19=301$. $\operatorname{prob}($ true tue $)$

$$
=\frac{A}{A+B}=\frac{282}{301}=93.7 \%
$$

3. Almost nu-ine in the global pot" ho; pots, whereas $61.2 \%$ of the samples "hod polio". Thus, the peron's test is almost certain a fave tue result
(8) Here is an example of a hand-written answer which would receive full marks on an exam.

$$
\begin{aligned}
& \text { 2014 excon Question } 4 . \\
& \text { 1. AuC }=30235+2 \times\left(\frac{35835251+23484}{2}\right) \\
& +3 \times\left(\frac{23484+10487}{2}\right)^{2}+4 \times\left(\frac{(5185+}{10487}\right) \\
& =30235+58735+50956.5+31344 \\
& =17127005
\end{aligned}
$$

2. $\frac{178300-171270.5}{171270.5} \times 100 \%=4.1 \%$

$$
\text { 3. } \int_{25}^{\infty} P(t) d t=\left[-176000 e^{-0.2 t}\right]_{25}^{\infty}
$$

$\therefore 1186$ The Auk from $=25$ to $t=\infty$ is 1186 , so 186 more Cases.
4. It is not likely to be exact, but could be a good model. Rérember $P(t)$ is Just a predictive model. There is no guarantee it will happen. Local outbreds in isolated populations may boost the number of cares.
(9) Here is an example of a hand-written answer which would receive full marks on an exam.

2014 exam Qurtion S.

1. Gquil'm: 0.7

Amp: 0.8
phare shutst 22 left

$$
L(t)=0.7+0.8 \sin \left(\frac{2 \pi P}{52}(t-22)\right) .
$$

2. Smollest: abot Week 10: $10^{-0.75} \approx 0.18$ lorgost: abat weck 30 : $10^{1.55}$ 二 35.5
3. The life-cycle diagram is:

4. Consider the rate of change of each population size.

For $C^{\prime}$, each month the number rises by the 60 new cases and the $10 \%$ of people in remission who have their cancer redevelop, and reduces by $50 \%$, being the $20 \%$ who die and the $30 \%$ who move into remission.
For $R^{\prime}$, each month the number rises by the $30 \%$ of people with cancer who go into remission, and reduces by $15 \%$, being the $10 \%$ who have their cancer redevelop and the $5 \%$ who die.
3. When $C=300$ and $R=40$, we have:
$C^{\prime}=60-0.5 \times 300+0.1 \times 40=60-150+4=-86$ and
$R^{\prime}=0.3 \times 300-0.15 \times 40=90-6=84$.
Hence using a step size of 0.5 gives:
$C=300-0.5 \times 86=257$ and $R=40+0.5 \times 84=82$.
4. A. It appears that the values of $R$ and $C$ are likely to approach constant values. That is, there will be 200 people with cancer and 400 in remission.
B. The approach is OK in the short term, as $R$ resembles a power function over the given time period. However, in the long term, it appears that $R$ may not or will not exceed 400 . The power function will increase indefinitely (at a decreasing rate, but still indefinite). Hence the model will be poor over an extended time period.
5. The output from the program is:

$$
\begin{aligned}
& \mathrm{T}=0.0: \mathrm{C}^{\prime}=-86.0 \text { and } \mathrm{R}^{\prime}=84.0 \\
& \mathrm{C}=257.0 \text { and } \mathrm{R}=82.0 \\
& \mathrm{~T}=0.5: \mathrm{C}^{\prime}=-60.3 \text { and } \mathrm{R}^{\prime}=64.8 \\
& \mathrm{C}=226.85 \text { and } \mathrm{R}=114.4
\end{aligned}
$$

